

OMID Web Implementation

Guide for Third Parties

Version 1.0 | June 2018

copyright © 2018 IAB Technology Laboratory

Katie Stroud
Please note that as of December 2020, OM SDK for Web Video implementations should use the OM SDK for Web Video, available for download at:

Katie Stroud
https://tools.iabtechlab.com/omsdk

 OMID Implementation Guide for Web

Table of Contents

Table of Contents 2

Executive Summary 3

Background 4
Overview 4
VAST 4+ Support with Backwards Compatibility 4
VPAID 4
Terminology 5

VAST Integration 6
Loading Verification Resources 6

From VAST 4.1+ 6
From VAST pre-Version 4.1 6

Loading Data From VAST 7
VerificationParameters 7
apiFramework 7
The vendor Attribute 7
The browserOptional Attribute 8

API Implementation 9
Execution Access 9
Verification Vendor Whitelisting 9
Ad Session ID 10
Ad Session Lifecycle 10
Session Cleanup 12
Implementation Guidance 12

Exposing the OMID Interface 12
Event Caching 13
Session Context 13

https://www.iabtechlab.com/omsdk Page 2 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

Executive Summary
The Open Measurement Software Development Kit (OM SDK) ​is designed to facilitate third

party viewability and verification measurement for ads served to mobile app environments

without requiring multiple Ad Verification Service Providers (Measurement Provider) SDK.

The OM SDK consists of a native library for iOS & Android as well as a JavaScript API named Open

Measurement Interface Definition (OMID) that is integrated by the Integration Partners (mobile app

or Ad SDK developers) . OMID API version 1.2 [INSERT URL] and above supports web browser

environments and can be used to measure viewability on the web. Though IAB Tech Lab has not

yet developed the code libraries for implementation of OMID version 1.2 for web browsers, the API

is being made available to support publishers or video players who may want to implement their

own version and offer OMID verification for third party measurement providers.

The collection, processing, analysis, and reporting of information surfaced by the OM SDK is

the responsibility of the Measurement Provider using their respective JavaScript tag that is

served with the ad creative​.

OM SDK and OMID are developed and managed by the ​Open Measurement Working Group

https://www.iabtechlab.com/omsdk Page 3 of 15

https://iabtechlab.com/working-groups/open-measurement-working-group/
https://www.iab.com/omsdk

 OMID Implementation Guide for Web

Background

Overview
The IAB TechLab is facilitating the development of the Open Measurement SDK (OMSDK),

which is a library intended to directly integrate with mobile in-app ad SDKs in order to enable

viewability measurement and general verification. At the same time, Digital Video Technical

Working Group has been seeking a standard to replace VPAID and enable verification on web

video for VAST 4+. As OMSDK covers in-app video, an optimal web standard would share the

underlying API and allow verification vendors to easily measure both web and in-app video.

While OMSDK is an implementation and not a standard, the interface it exposes to verification

code -- a subset of the Open Measurement Interface Definition (OMID) -- can be used as such.

Currently OMSDK is an app-only library, and while a web version is on the roadmap, there is a

need for web players to be able to independently develop OMID compatibility in the interim. This

document provides guidance for third-parties web players or SDKs to implement OMID support

such that they will interoperate with verification code designed for OMSDK. Implementers

should also consult the VAST 4.1 specification for the latest features, including clarifications and

updates to the verification sections intended to support this work.

VAST 4+ Support with Backwards Compatibility
In VAST 4, measurement code and relevant per-vendor metadata appears within the

<AdVerifications> node, allowing multiple vendors to measure the same impression.

Earlier versions of VAST will be able to support this as well, by including ​<AdVerifications>

as an ​<Extension> ​.

VPAID

VPAID was not originally designed to handle the verification use case, and as such had several

unfortunate properties (taking rendering control away from publishers, forcing rendering

responsibility onto verifiers, making early loading of verification code almost impossible, putting

https://www.iabtechlab.com/omsdk Page 4 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

verification code in the critical path of creative playback with multiple verifiers all loading in

serial, etc). This has caused many negative associations with the name VPAID among

publishers, advertisers, and users, as well as confusion as to why support for a spec intended

for interactivity was required to make inventory verifiable. The design of VAST 4+OMID aims to

have a standard focused purely on verification, solving many of the issues with the VPAID

paradigm.

Terminology
Player​: Code used by the publisher (including any third-party integrated components) to handle

video playback, ad fetching, user interaction, etc. This document uses the term "player"

throughout, although this is usually meant to refer more generally to the party implementing

OMID and interacting with verification code. In practice, for example, this may more commonly

be an advertising SDK which is integrated with the actual web player.

Verification Code/Resource​: Executable code provided by the parties wishing to monitor ad

playback (generally from a third-party verification company), for the purpose of live

measurement at impression time. It collects information regarding video playback, runtime

environment, and viewability/audibility.

https://www.iabtechlab.com/omsdk Page 5 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

VAST Integration

Loading Verification Resources

From VAST 4.1+

For video impressions delivered through VAST 4.1+ documents, the ​<AdVerifications>

element should be used to pass the resource URLs for the desired verification code. Each

<Verification> ​should be loaded (or considered for loading per vendor whitelisting),

including those from the ​<Wrapper> ​ of any intermediate VAST.

Example: AdVerifications in VAST 4.1

...

<AdVerifications>

 <Verification vendor="abc.com-omid">

 <JavaScriptResource apiFramework="omid" browserOptional="true">

 <![CDATA[​https://abc.com/omid.js​]]>
 </JavaScriptResource>

 <VerificationParameters><![CDATA[...]]></VerificationParameters>

 <TrackingEvents>

 <Tracking event="verificationNotExecuted">

 <![CDATA[https://abc.com/omid_reject?r=[REASON]]]>

 </Tracking>

 </TrackingEvents>

 </Verification>

 <Verification vendor="xyz.com-omidpub">

 <JavaScriptResource apiFramework="omid" browserOptional="true">

 <![CDATA[​https://xyz.com/omid-verify.js​]]>
 </JavaScriptResource>

 <VerificationParameters><![CDATA[...]]></VerificationParameters>

 </Verification>

</AdVerifications>

...

Both ​omid.js​ and ​omid-verify.js​ scripts should be picked up by the player.

From VAST pre-Version 4.1
For older version VAST documents, verification code should be loaded via ​<Extension> ​,

where the root is an ​<AdVerifications> ​ with the same schema as the VAST 4.1 element.

https://www.iabtechlab.com/omsdk Page 6 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

Example: AdVerifications in VAST pre-Version 4.1

...

<Extensions>

 <Extension type="AdVerifications">

 ​<AdVerifications>
 <Verification vendor="verification.com-omid">

 <JavaScriptResource apiFramework="omid" browserOptional="false">

 <![CDATA[https://verification.com/omid_verification.js]]>

 </JavaScriptResource>

 <VerificationParameters><![CDATA[...]]></VerificationParameters>

 </Verification>

 ​</AdVerifications>
 </Extension>

</Extensions>

...

The ​<AdVerifications> element under the ​<Extension> is otherwise identical to one found in a
VAST 4.1+ document.

Loading Data From VAST

VerificationParameters
The ​<VerificationParameters> element contains a CDATA-encoded string of arbitrary

format (i.e. determined by each vendor) and should be passed along verbatim to each script as

part of the ​sessionStart event. ​<VerificationParameters> data from a vendor should

be matched to the ​vendorKey ​ passed to ​registerSessionObserver ​.

apiFramework
The ​apiFramework attribute of the ​<JavaScriptResource> ​for OMID-compatible scripts

will be set to "omid".

The vendor Attribute
The vendor attribute on the ​<Verification> element should be unique per verification

resource and should match the value passed as the ​vendorKey argument of

registerSessionObserver ​.

https://www.iabtechlab.com/omsdk Page 7 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

The browserOptional Attribute
<JavaScriptResource> elements marked with ​browserOptional="true" can execute

in non-browser environments and do not require the presence of certain web-based JavaScript

functionality. In the context of OMID for web, where the existence of a browser is implied,

resources with ​browserOptional set to either value are always supported. If a Verification

provides both ​browserOptional="true" and ​browserOptional="false"

<JavaScriptResource> elements, the ​browserOptional="false ​" version should be

preferred, so it can take full advantage of browser resources.

https://www.iabtechlab.com/omsdk Page 8 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

API Implementation

Execution Access
While the OMSDK project supports the ability to optionally execute verification code within a

sandbox, third-party OMID web implementations should almost exclusively run verification

resources such that the ​<video> ​element (or in the absence of such, the relevant element

where media is rendered) is directly accessible. Implementations where this is not the case will

be considered unmeasurable by most verification vendors without prior agreement. Data

collected in sandboxed non-OMSDK environments are unusable for reporting on accredited

metrics unless certified for implementation and measurement provider has completed MRC

audit using the data. Alternatively, publishers may choose to participate in the Open

Measurement Working Group to support development of and integrate with OMSDK on web in

order to enable sandboxing.

Regardless of choice, OMID implementers should provide the same level of access to all

verification resources loaded for a given session.

Verification Vendor Whitelisting
Publishers may choose to employ a vendor whitelist when deciding which verification resources

to execute. When this is the case, the player must support the new tracking event

"verificationNotExecuted" ​, which appears as a new ​<TrackingEvent> element

under ​<Verification> ​ in VAST 4.1.

For example, a whitelist implementation might look as follows:

Trusted Verifiers Owned Domains

Verification Company A verificationbya.com, static.averification.net

Verification Company B bverify.com

Given a VAST containing the following ​<AdVerifications> ​:

https://www.iabtechlab.com/omsdk Page 9 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

<AdVerifications>

 <Verification vendor="verificationbya.com-omid">

 <JavaScriptResource apiFramework="omid">

 <![CDATA[https://​static.averification.net​/omid.js]]>
 </JavaScriptResource>

 </Verification>

 <Verification vendor="unknown-omid">

 <JavaScriptResource apiFramework="omid">

 <![CDATA[https://​unknown-domain.com​/untrusted.js]]>
 </JavaScriptResource>

 <TrackingEvent>

 <Tracking event="verificationNotExecuted">

 <![CDATA[​https://u.com/omid_error?r=[REASON]&i=[ADSERVINGID]
 &d=[DOMAIN]&p=[PLAYERUA]​]]>
 </Tracking>

 </TrackingEvent>

 </Verification>

</AdVerifications>

The player would execute the ​omid.js script provided by Verification Company A as normal.

The resource from the unrecognized "unknown-domain.com" would not, and the URI under the

"verificationNotExecuted" ​<Tracking> would be pinged with ​[REASON] set to

reason code 1, indicating that the verification resource was rejected by the publisher. All VAST

4.1 macros (including ​[ADSERVINGID]​, ​[DOMAIN]​, and ​[PLAYERUA]​) should be supported in

order to provide accounting insight and actionability to such events.

Ad Session ID
The player should generate a GUID for each unique ad session to share with verification code

for tracking purposes. This value is provided as the ​adSessionId property on every event sent

for that session.

Ad Session Lifecycle
The lifecycle of an ad session proceeds as follows. This process may be started well before

video playback begins. In fact, it is recommended to begin loading verification resources as

early as is feasible. Note that, unlike VPAID-style verification in which loading verification code

would immediately trigger playback, there is little downside to pre-loading OMID verification

code. Scripts will simply register handlers and wait for the player to initiate playback. So

whenever possible (e.g. mid- or post-roll), players should consider loading verification resources

before playback While it is supported to start playing the ad immediately after step 5 regardless

https://www.iabtechlab.com/omsdk Page 10 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

of verification state, the best outcome (which minimizes discrepancies) is one where verification

code is fetched early and is ready before the ad begins playing.

1. The player collects the list of ​<Verification> script resources from the

<AdVerifications> of any VASTs that were loaded for the current impression

(including those from intermediate ​<Wrapper> ​ VASTs).

2. The player decides which resource to execute for each ​<Verification> ​, if any. If

there is no compatible or acceptable resource for a given ​<Verification> ​, any

provided ​"verificationNotExecuted" <Tracking> events should be fired

immediately.

3. For each resource from step 2, the player creates or chooses an iframe (or iframes) and

initializes the code which exposes an OMID interface (i.e. ​window.omid3p ​).

4. The player loads each verification resource accepted from step 2 inside one of these

iframes.

5. The player is free to begin creative playback any time after this point. Note that loading

resources from step 4 must only be started; the player is not required to wait for each

resource to finish loading.

6. Each verification resource initializes by calling ​registerSessionObserver ​, and by

subscribing to any events it's interested in via ​addEventListener ​.

7. The player sends the ​sessionStart event to any registered observers as soon as all

the relevant information is available (this may be well before actual playback starts). This

event (as well as all subsequent events) contains the unique Ad Session ID for this

session.

8. The player sends any relevant video lifecycle events to registered listeners, in

chronological order. This may include cached, timestamped events that occurred before

the caller was registered, allowing verification resources that may have loaded late to

"catch up" on critical events.

9. The player sends the ​sessionFinish ​ event to indicate session termination.

10. After a delay, the player cleans up verification resources.

https://www.iabtechlab.com/omsdk Page 11 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

Session Cleanup
After the ​sessionFinish event is fired, whenever possible the player should give verification

code sufficient time to ensure any end-of-session measurement and reporting is completed

before cleaning up containing iframe contexts. The exact value is left to the player, but

something on the order of seconds is recommended. This allows time for reporting pings to

successfully send without being cancelled by the browser, in order to minimize discrepancies.

Implementation Guidance
The specifics of the OMID JS Verification Client API that need to be implemented can be found

in the API document ​here (​https://iabtechlab.com/omsdk). Below is some guidance on

implementing that API specifically for third-party web players or SDKs.

Exposing the OMID Interface
The player exposes the OMID interface by providing a global object in each iframe context

where verification code is loaded, accessible as ​window.omid3p​. See the OMID JS Verification

Client API document for details on individual methods. Third-party web implementers are only

responsible for providing implementations the following methods, exposed as properties on the

omid3p​ objec​t.

registerSessionObserver(observer, vendorKey)

addEventListener(type, listener)

Example: Boostrapping OMID and Verification Code

function createOmidFrames(verificationResources) {
 verificationResources.forEach((verificationResource) => {
 const frame = document.createElement('iframe');
 frame.style.display = 'none';
 document.body.appendChild(frame);
 const frameWin = frame.contentWindow;
 // Expose OMID.
 frameWin.omid3p = {
 'registerSessionObserver': registerSessionObserverImpl,
 'addEventListener': addEventListenerImpl,
 };
 // Load verification script.
 const verificationScript = frameWin.document.createElement('script');

https://www.iabtechlab.com/omsdk Page 12 of 15

https://iabtechlab.com/omsdk
https://iabtechlab.com/omsdk
https://www.iab.com/omsdk

 OMID Implementation Guide for Web

 verificationScript.src = verificationResource;
 frameWin.document.body.appendChild(verificationScript);
 });
}

Event Caching
The player should cache all triggered events after verification scripts have been loaded into their

iframes. Upon subscription to an event, the player should invoke the given handler with each

previously fired event of that type in chronological order. This allows verification code which may

have loaded late to "catch up", and prevents situations where critical events are missed (e.g.

start of playback), which may result in reporting discrepancies.

Implementation of this feature may be skipped if the player chooses to wait for each verification

vendor to call ​registerSessionObserver ​ before starting ad playback.

Session Context
The context object in the event data of the ​sessionStart event contains static properties of

the playback environment. For third-party web implementers, the following properties should be

included the context:

Property Name Property
Type

Value to provide

apiVersion string "1.0"

This is the version of the OMID JS Verification Client API that
has been implemented.

environment string "web"

accessMode string "full"

adSessionType string "html"

videoElement HTMLVideo
Element

Required for all linear video ads, or any ad where a video
element is the main focal point of the creative. For
VAST-served creatives that do not use HTML5 video at all,

https://www.iabtechlab.com/omsdk Page 13 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

slotElement may be used instead.

slotElement Element Required for non-linear or interactive ads where no
HTMLVideoElement is used in the creative. It should not be
provided for standard linear video ads; videoElement should
be passed instead.

omidJsInfo Object Information about the provider/implementer of OMID. The
provider in this case is the player or SDK that is
implementing the OMID interface and interacting with
verification code.

This object contains the following properties:

Property Name Property
Type

Description

omidImplementer string The name of the code or
library which is
implementing and providing
OMID.

serviceVersion string The version of the code
from omidImplementer.

partnerName string If the player or ad SDK
does not directly implement
OMID, but instead uses a
library to provide that
functionality, the name of
the player or SDK should be
listed here.

partnerVersion string The version of the code
from partnerName.

Example: Firing the sessionStart event

function registerSessionObserverImpl(observer, vendorKey) {
 registeredSessionObservers.push({
 'observer': observer,

https://www.iabtechlab.com/omsdk Page 14 of 15

https://www.iab.com/omsdk

 OMID Implementation Guide for Web

 'verificationParameters': getParametersFromVastForVendor(vendorKey)
 });
}

function newContext() {
 return {
 'apiVersion': '1.0',
 'environment': 'web',
 'accessMode': 'full',
 'videoElement': document.getElementById('video-player-element'),
 'adSessionType': 'html',
 'adServingId': 'c532d16d-4d7f-4449-bd29-2ec0e693fc86',
 'adCount': 1,
 'omidJsInfo': {
 'omidImplementer': 'example-sdk',
 'serviceVersion': '4.1.1',
 },
 };
}

// Fire the sessionStart event to each registered session observer.
registeredSessionObservers.forEach(function(sessionObserver) {
 const observerCallback = sessionObserver.observer;
 const parameters = sessionObserver.verificationParameters;
 observerCallback({
 'adSessionId': 'ad994cf4-1cf2-4ffc-88aa-d2a6e69881eb',
 'type': 'sessionStart',
 'timestamp': 123456789,
 'data': {
 'verificationParameters': parameters,
 'context': newContext(),
 }
 });
});

https://www.iabtechlab.com/omsdk Page 15 of 15

https://www.iab.com/omsdk

