

MRAID 3.0

Best Practices Guide

June 21, 2018

Executive Summary
MRAID, or “Mobile Rich Media Ad Interface Definitions,” is the common API (Application

Programming Interface) for mobile rich media ads that will run in mobile apps. This is a

standardized set of commands, designed to work with HTML5 and JavaScript, that

developers creating rich media ads use to communicate what those ads do (expand,

resize, get access to device functionalities such as the accelerometer, etc.) with the

apps into which they are being served.

The last MRAID best practices documentation was released in 2014. Times have

changed and the working group is excited to announced a new MRAID best practices

document for 2018. This new best practices document clarifies many things that were

either ambiguous or not well understood and gives helpful hints on how to use MRAID

3.0 to the fullest.

Audience
This best practices document is designed for Ad SDK developers and MRAID creative

developers.

More information on MRAID is available at: https://www.iab.com/mraid

https://www.iab.com/mraid

About IAB Tech Lab
The IAB Technology Laboratory is an independent, international, research and development

consortium charged with producing and helping companies implement global industry technical

standards. Comprised of digital publishers and ad technology firms, as well as marketers,

agencies, and other companies with interests in the interactive marketing arena, the IAB Tech

Lab’s goal is to reduce friction associated with the digital advertising and marketing supply

chain, while contributing to the safe and secure growth of the industry.

Learn more about IAB Tech Lab here: https://www.iabtechlab.com/

https://www.iabtechlab.com/

MRAID Working Group
MRAID working group has the following members. Special contributions to the best

practices guide were made by ViralGains, Celtra, Yieldmo and Pandora.

Adform Gruuv Interactive Rocket10

AdGear Homes.com Sabio Mobile

Adobe Hulu Shazam

AdTheorent IAB Sizmek

AerServ Improve Digital
International B.V.

StackAdapt

Alliance for Audited
Media (AAM)

InMobi Taboola

Amazon Innovid Tapjoy

Anzu Virtual Reality Integral Ad Science Telaria

BARC India Intowow The Media Trust Company

Bonzai Jukin Media The New York Times
Company

Celtra Kiip The Trade Desk

Chocolate Leaf Group Thinknear by Telenav

Conversant Media Ligatus Turner Broadcasting System

Cyber Communications
Inc.

Liquidus Marketing Twitter

Dentsu Aegis LogoBar Enterprises Vertebrae

Digital Advertising
Consortium Inc.

Meredith Digital Verve

Display.io MGID Videology

DoubleVerify Microsoft Advertising Vidooly

Flashtalking mPlatform ViralGains

Flipboard NinthDecimal Westwood One

FORTVISION Oath Yahoo

FreeWheel OpenX Yieldmo

Fyber Pandora YuMe by RhythmOne

Google Pixalate Zenith Media

 RhythmOne Zentrick

* Working Group membership as of June 15, 2018

Learn more about the MRAID Working Group here
(https://iabtechlab.com/working-groups/mraid-working-group/)

https://iabtechlab.com/working-groups/mraid-working-group/
https://iabtechlab.com/working-groups/mraid-working-group/

Table of Contents

Executive Summary 2
Audience 2

About IAB Tech Lab 3

MRAID Working Group 4

Introduction 8

Common Mistakes 9
Failure to add an MRAID ready event listener to the creative 9
Not optimizing for mobile devices when designing views 9
Navigating away from the ad with a URL instead of calling mraid.open 9
Using 3rd party library bindings without using their ready event method 10
Binding to only DOM ready or only MRAID ready 10
Inserting objects into the DOM in inappropriate locations 10
Attempting to resize or expand interstitials 11
Showing two close buttons (useCustomClose is ignored) 11
Attempting to use expand() multiple times in a creative 11
Attempting to resize an expanded ad 11
Attempting to use open() rather than playVideo() for video URLs 12
Missed opportunities to design ads for graceful degradation 12

Ways of counting viewable impressions 13

MRAID Creative Requirements 14
Initializing/Starting an MRAID ad 14

HTML Technique 14
DOM Insertion Technique 14

Two-part expandable ads are deprecated 15
Interstitial ads 16
Resizeable ads 16
MRAID 2.0 event chains 17
Miscellaneous MRAID features 17

Debugging tips 19
Developer tools 19
Console logs 19
SDK vendor focused requirements 19

Check your MRAID implementation with compliance ads 19
Never fire an event before making the associated change 20

Ensure containers report positioning reliably 20

Introduction

This document provides best practices and guidelines for designers building MRAID

creatives, as well as clarifying requirements for implementing MRAID in

containers/SDKs. While previous versions of MRAID had ambiguities and

inconsistencies in the specification, MRAID 3.0 has clarified and removed many

ambiguities, but this document serves as a reference for older implementations and to

provide guidance on many common cases in the industry.

Common Mistakes
Networks and publishers supporting MRAID ads report seeing several common errors in

would-be MRAID creatives. In some cases, these errors result in a creative performing

correctly in some MRAID containers but not in others, leading to confusion. Avoiding

these errors will save time and maximize the odds that a rich media creative will work

across all MRAID implementations.

Failure to add an MRAID ready event listener to the creative
This could cause the creative to start making MRAID calls before the container is

finished loading the MRAID libraries. This risk is the creative asking the container for

actions that the container is not yet prepared for, breaking the ad and causing it to

behave in ways the designer does not intend. Creatives can also check the

environmental variable for MRAID 3.0 to make sure they have been served into the

proper container.

Not optimizing for mobile devices when designing views

For example, this snippet of HTML can be put into the ad to make the creative scale to

the screen width. It controls the initial behavior of Webkit based browsers.

<meta name='viewport' content='width=device-width,initial-scale=1,maximum-scale=1'>

Navigating away from the ad with a URL instead of calling
mraid.open
As per the MRAID 3.0 Spec, hyperlinks must not be used with MRAID ads. Hyperlinks

are not identified explicitly in MRAID, and MRAID-compliant containers will not treat

hyperlinks in a consistent, predictable way. Some may ignore them entirely, some may

leave the app and open them in the device’s native browser. For consistent, predictable

behavior, stick to mraid.open().

When the user clicks on an HTML hyperlink (defined by an tag) in an

MRAID ad, there are two possibilities: the linked page could load in the existing

webview, or the content could open a separate browser window and load the indicated

HTML link there.

The open method must always use the native device or OS behavior or user setting for

opening a URL from an MRAID ad. This will ensure the experience that the user

expects and enable necessary device controls the user needs to navigate to and away

from the external links. (From page 36 of MRAID 3.0 specification.)

Using 3rd party library bindings without using their ready event
method
Third party libraries such as jQuery have a ready method which help facilitate a similar

functionality as the MRAID ready event listener. In the example of jQuery, putting the

DOM click bindings inside of the ready(handler) method makes sure that the entire page

has finished loading before starting execution of any other jQuery functions.

Binding to only DOM ready or only MRAID ready
If you are not using jQuery, you must still be aware that there are two ready states to

your MRAID ad. Binding your initialization to just the window.ready event ignores that

the MRAID libraries may not be available yet. Likewise, listening only for the

mraid.ready event ignores that the HTML DOM may still be rendering. Be sure to check

for both ready states before triggering initialization routines.

Inserting objects into the DOM in inappropriate locations
Safari Mobile and iOS WebViews expect document.appendChild to be called on a

specific node and doesn’t assume the body node otherwise. This means that if you

would like to append a node to the body (or any other node for that matter), it should be

https://iabtechlab.com/wp-content/uploads/2018/06/MRAID_3.0_FINAL_June_2018.pdf

clearly specified in the Javascript call as such: document.body.appendChild().

This is a common source for errors, as evidenced in StackOverflow.

Attempting to resize or expand interstitials
Interstitial ads in MRAID cannot change size and calls to mraid.resize() and

mraid.expand() will result in an error. This also means that the state of an interstitial

is default and not expanded.

Showing two close buttons (useCustomClose is ignored)
While MRAID 2.0 allowed creatives to suppress the SDK close button image, MRAID

3.0 has made the SDK provided close button image mandatory. This ensures a

consistent experience across all ads in a SDK. It is important that any creative

expecting to run in multiple versions of MRAID understand that MRAID 3.0 containers

will always show a close button provided by the SDK. Even if the ad sets

useCustomClose as true, the SDK will ignore this request and still show its own

control.

Attempting to use expand() multiple times in a creative
To maintain simplicity and prevent ads opening large numbers of views, MRAID ads can

only expand() once. If an ad is in an expanded state and attempts to call expand()

again, MRAID will ignore that second call. For creative needs involving multiple size

changes, do not use expand() at all. Use resize() instead.

Attempting to resize an expanded ad
Similar to the previous point, ads in the expanded state cannot then call resize() to

further change size. If a creative calls mraid.expand() and then subsequently calls

resize() from the expanded state, the MRAID container will ignore the resize

attempt.

Attempting to use open() rather than playVideo() for video
URLs
For platforms that do not reliably support the HTML5 video tag, you should use the

mraid.playVideo(url) method. Using mraid.open can cause unpredictable

behaviors and should not be used. The majority of environments that support MRAID

3.0 already support the HTML5 video tag. In these cases, using the video tag is the

recommended way to play a video, within the ad, itself.

Missed opportunities to design ads for graceful degradation
There are many examples of creatives where, if an error happens, they fail when they

don’t have to. Designers should write MRAID ads such that if an error happens, the

creative can try an alternative path or behavior, rather than simply failing.

MRAID 3.0 creatives that don’t require specific MRAID 3.0 features should be able to

run in a MRAID 2.0 container. If the ad requires MRAID 3.0 features, it is important to

attempt to only serve in MRAID 3.0 placements.

Ways of counting viewable impressions
For purposes of viewable impression counting, creatives should use Open

Measurement SDK first, then MRAID 3.0 exposureChange method, then can degrade

to using MRAID 2.0 isViewable method and events to fallback. For MRAID 2.0

implementations, it is important to listen for isViewable to make sure that creative

knows when to initiate counting viewable impressions. While MRAID did not specify

exactly what the definition of isViewable was, it has been clarified to the point where

isViewable is good enough to provide information that something is being shown on

the screen.

https://www.iabtechlab.com/omsdk
https://www.iabtechlab.com/omsdk

MRAID Creative Requirements
Where the previous section highlighted common errors, this section offers some

concrete advice, both for MRAID ads generally and for specific ad types supported by

MRAID.

Initializing/Starting an MRAID ad
Always include or add “mraid.js” to the creative as early as possible. MRAID permits this

either by including a script tag in the HTML or via DOM insertion. This is a requirement

for a creative to be a proper MRAID ad. Some ad designers assume that the container

will automatically inject the MRAID libraries (and some containers do actually do this)

but the script tag must always be included to ensure proper ad behavior in all MRAID

implementations.

HTML Technique
<script src="mraid.js"></script>

DOM Insertion Technique
<script type="text/javascript">
(function(){

var head = document.getElementsByTagName('head').item(0),

js = document.createElement('script'),

s = 'mraid.js';

js.setAttribute('type', 'text/javascript');

js.setAttribute('src', s);

head.appendChild(js);

js.addEventListener('load', function() {

 // mraid object has loaded, wait for mraid ready event

});

js.addEventListener('error', function() {

 // error loading mraid.js

});

})();

</script>

Start with the mraid.addEventListener for ready as shown below. Put the rest of the

MRAID code in displayAd or similar initialization function. The state must be “ready”

before any MRAID APIs can be used. Failure to observe this requirement risks

unpredictable failures for the ad when it tries to use MRAID functionalities that are not

yet available to it.

Occasionally, the ready event is fired before the creative has an opportunity to register a

listener. Therefore using logic like this example represents a best practice.

function init() {

var success = false;

if (document.readyState === 'complete') {

if (typeof mraid !== 'undefined') {

if (mraid.getState() === 'loading') {

mraid.addEventListener('ready', displayAd);

} else if (mraid.getState() === 'default') {

displayAd();

}

success = true;

}

}

return success;
}

Two-part expandable ads are deprecated
As of MRAID 3.0, two-part expandable ads have been deprecated and should not be

used. Only self-contained expandable creatives should be used for all MRAID ad

experiences.

Interstitial ads

An MRAID interstitial ad will include a close control and indicator, just like an

expandable ad. Like expandable ads, this close indicator is shown at all times by the

SDK.

Resizeable ads
Be aware of how the creative is positioning itself within the container. Typically ad

designers will position the ad at the top left of the container. In such cases, a resizable

ad that moves UP from the bottom of the screen will cause the banner to jump up to the

new top-left corner of the resized container. Ad designers should always specify how

they are anchoring the creative in the container, and do so in such a way that the

banner does not jump around the screen.

Except in special cases, ad designers should ensure that a resized ad continues to

cover the original banner space the default ad occupied.

Except in special cases, ad designers should not use mraid.resize() to cover the

full screen area of the device. If the ad needs to change size to a full-screen area, use

mraid.expand().

Always use setResizeProperties before calling resize .

var resizeAd = function() {

var screenSize = mraid.getScreenSize();

var resizeProperties = {

"width": screenSize.width,

"height": screenSize.height/2,

"offsetX": 0,

"offsetY": screenSize.height/10,

"allowOffscreen": false

}

mraid.setResizeProperties(resizeProperties);

mraid.resize();

};

MRAID 2.0 event chains
MRAID 2.0 ads should take care about making sure expected values from a series of

chained events (expand causes a sizeChange and stateChain) occur at the last

fired event. MRAID 2.0 containers were not mandated to fire in any order or make sure

all variables were set for all chained events before firing any of them. All MRAID 2.0

mandated was that an event must fire after the variables it changed was done. For

instance, in the case of an ad expanding, the stateChange event may fire and the state

changes to expanded, but the sizeChange has not fired yet and the container size has

not chained yet. It is important to listen to both events to make sure all changes have

been done.

Miscellaneous MRAID features
In MRAID 2.0, when a creative is changing in several ways at once, it is important to

listen for all chained events before proceeding. Different MRAID implementations may

fire these events in a different order, so it is not safe to assume that one event firing

means the sequence of activities is completed.

MRAID 3.0 containers are now required to make all container size and state changes

before firing any events that happen because of that change. This means that a creative

can listen to the event it cares about.

For instance, if the creative wants to know when the container is expanded, it can just

listen to stateChange and see that it was expanded or not. It does not need to also

check sizeChange. The expectation is that the container makes all the needed

changes and then fires the events.

Always call supports() before calling any specific MRAID feature like

createCalendarEvent and storePicture.

Use the unload() command to prevent a poor user experience if the ad decides it will

not or refuses to run.

Debugging tips

Developer tools
For debugging JavaScript code, use the web debugging tools from browser vendors.

One example of these tools is Chrome Developer Tools. There a variety of other similar

tools as well, like Safari Developer Tools and Firebug. Use the ‘Console’ section of the

developer tools to get access to a live JavaScript interpreter with the current context

loaded. This enables you to test out existing functions and add new things to the context

to test. It can be also used for directing debugging logs to, from, or within your functions.

Console logs
For testing expected output and other general debugging, console logs can be used

through the function console.log() . There are various ways to format and output your

messages to the console, and the full details are outlined in the article Mastering

Console Logging by Alex Young for DailyJS (http://dailyjs.com/2012/02/02/console/)

SDK vendor focused requirements
While the majority of this guide focused on advice for creative designers using MRAID,

in some cases problems making MRAID creatives work are the fault of the SDK or

container, not the creative designer. The entire ecosystem benefits when MRAID

implementations are uniform and consistent and SDK vendors reading this document

should be aware of the following:

Check your MRAID implementation with compliance ads
● Vendors claiming MRAID 3.0 compliance must be able to prove their container

correctly runs the IAB’s official certification suite ads, the documentation and

links to which are located at iab.net/mraid. Providing consistent behavior is

essential to maintaining a healthy ecosystem for vendors, clients, and

http://dailyjs.com/2012/02/02/console/

consumers. The compliance test for MRAID 2.0 was officially ratified by the IAB

in July 2014. MRAID 3.0 compliance ads are in a public comment period. When

released, these ads will provide SDK vendors the ability to make sure their

containers are compliant with MRAID 3.0 specifications.

● MRAID 2.0 compliance ads for expansion (single part), resize, and interstitials

should be used for compliance testing for MRAID 3.0 containers. During the

public comment period, these MRAID 2.0 ads will be refreshed for use with

MRAID 3.0.

● Any vendor that has passed the official IAB test should have no problems with

the notes called out below, however, the following two items are meant to clarify

points that may be ambiguous.

Never fire an event before making the associated change
An ad creative that requests a resize should be able to listen for a size change event as

an indicator that the container has successfully completed the requested change. tTe

container should always complete a change and update any associated values before

firing the associated event. This is required by the MRAID 2.0 specification. MRAID 3.0

also requires that any chained events be sent after all container changes and variables

have been set.

Ensure containers report positioning reliably
Vendors should take care that containers report creative positions accurately,

particularly for resizeable ads. Ad designers that believe their coding is right and yet the

ad is not getting the right values on a resize, should try using

getCurrentPosition/getDefaultPosition to test where the ad is and how it is

being moved.

