

SafeFrame 2.0
Enabling safe, rich ad interaction without direct access to the webpage

Draft for Public Comment: July 29, 2020 – September 28, 2020 (60 days)

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 2

This document has been developed by the IAB Ad Technology Council

The SafeFrame specification was created by a working group of volunteers from 43 IAB
member companies.

The SafeFrame Working Group was led by:

• Lucas Silva, Google
• Marian Rusnak, Verizon

The following IAB member companies contributed to this document:

Adform Criteo Line
Admiral Adblock Publisher Solutions Cyber Communications Inc. LinkedIn
Admixer EU Gmbh Digital Advertising Consortium Inc. Liquidus Marketing
AdPushup Digitas LBI Microsoft Advertising
Alliance for Audited Media (AAM) DoubleVerify Powerinbox
AMC Networks ESPN Protected Media
Audit Bureau of Circulations UK Forensiq Sharethrough
Axel Springer SE FreeWheel Starcom Worldwide
BARC India Google Terragon Group
Blue 449 GumGum The New York Times Company
Bonzai HyperTV TripleLift
Browsi IAB Japan Unruly
BuzzFeed Insticator Verizon Yahoo Media
CBS Interactive Integral Ad Science Yomedia Network

In addition to member companies, guests from PreBid.org also contributed.

The IAB lead on this initiative was Katie Stroud

ABOUT IAB TECHNOLOGY LABORATORY
Established in 2014, the IAB Technology Laboratory (Tech Lab) is a non-profit consortium that
engages a member community globally to develop foundational technology and standards that
enable growth and trust in the digital media ecosystem. Comprised of digital publishers, ad
technology firms, agencies, marketers, and other member companies, IAB Tech Lab focuses on
solutions for brand safety and ad fraud; identity, data, and consumer privacy; ad experiences
and measurement; and programmatic effectiveness. Its work includes the OpenRTB real-time
bidding protocol, ads.txt anti-fraud specification, Open Measurement SDK for viewability and
verification, VAST video specification, and DigiTrust identity service. Board
members/companies are listed at https://iabtechlab.com/about-the-iab-tech-lab/tech-lab-
leadership/. For more information, please visit https://iabtechlab.com.

about:blank
about:blank
https://iabtechlab.com/

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 3

Table of Contents

Summary .. 5
Audience ... 5
Updates ... 6
Scope .. 6
Out of Scope ... 7
Summary of Release Versions .. 7

Benefits .. 7
Page Security .. 8
Stability .. 8
Transparency .. 8
Scale ... 8

How It works .. 8
Host Main Page ... 9
Cross-Origin iFrame .. 9
SafeFrame API .. 9
Ad Creative .. 9

Using Browser Security Features .. 9
Sandboxing ... 9
Feature Policy (Permission Policy) ... 10

Header Bidding .. 10
SafeFrame 2.0 Technical Details .. 12

Change Log ... 12
Managing the SafeFrame .. 13

Resize the SafeFrame container ... 14
Resize - MRAID Alignment 14
Resize - Web Only 14

Using Intersection Observer .. 15
Initialization ... 15

Namespace ... 15
SF_ENV .. 16
getVersion() ... 16
supports() .. 16
meta() .. 17

SafeFrame 2.0 Properties ... 18
get/set ExpandProperties() ... 18
get/set ResizeProperties() ... 19
getState() ... 20
getCurrentPosition() .. 20
getDefaultPosition() ... 21
getMaxSize() ... 21
getScreenSize() ... 22

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 4

SafeFrame 2.0 Events ... 22
error ... 23
ready ... 23
sizeChange ... 24
stateChange .. 24
metaChange .. 25

SafeFrame 2.0 Methods .. 25
addEventListener() .. 25
removeEventListener() .. 26
close() .. 26
unload() ... 26
expand() .. 27
resize() .. 27
cookie(cookieName, cookieData) ... 28

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 5

Summary
SafeFrame 2.0 defines an API-managed iframe that enables an ad to interact with a webpage
without accessing sensitive page data.

SafeFrame was originally released in 2013, with a minor update in 2014. It offered publisher
page security while enabling rich ad interaction on web and web-based apps. It also enabled
third party ad measurement and verification. However, in the last 6 years ad tech has seen
advances in browser features, more advanced solutions for measurement, innovations in ad
creative, and continued increase in technical integrations. SafeFrame in its original form had
become implementation heavy and creatively restrictive.

SafeFrame 2.0 is a significant update from its last release. More lightweight with support for
advances in browser security, measurement technology, and ad interaction, SafeFrame 2.0 is
easier to implement. Among some of the changes are: removal of the required host
implementation, guidance for sandboxing, guidance for use with header bidding, alignment with
Mobile Rich Media Ad Interface Definition (MRAID) for easier ad conversion, and focus on ad
interaction features with guidance for use of other measurement solutions. A more granular list
of updates is provided in the following sections.

SafeFrame 2.0 enables safer programmatic placement at scale. Widespread adoption simplifies
ad buys for agencies and brands while enabling publisher yield without sacrificing safety.
Achieving adoption will require support from multiple parties. Publishers need to build an API to
support the technical features described here. Ad developers need to design ad function to
make use of SafeFrame 2.0 features. Programmatic vendors and other ad delivery platforms
need to accept and support SafeFrame, usually communicating to other technical platforms
about the use of SafeFrame in a requested or delivered ad.

IAB Tech Lab and the SafeFrame Working Group continue to work on resources to support
SafeFrame implementation and adoption. Increasing adoption creates a safer ad experience for
users.

Audience
SafeFrame 2.0 requires a host API that the publisher implements and an ad SDK that
communicates with the API. Most of the technical details in this documentation is targeted
toward ad developers. Additional guidance is provided for publishers on how to implement the
host API.

Web technology vendors (SSP, DSP, measurement providers, brand safety, programmatic
platforms, etc.) should also be familiar with SafeFrames and guidance around serving
SafeFrame ads, including using any SafeFrame features and settings in the programmatic tools
used to request and serve ads. Vendors may also be able to offer SafeFrame capabilities on
behalf of publishers or ad developers and can use this documentation to build third party tools
that offer SafeFrame functionality.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 6

Updates
The requirements for updating SafeFrame to version 2.0 includes simplifying implementation
while enabling flexibility.

● Header Bidding: Supporting SafeFrames in header bidding with previous versions was
complex and only achieved with specialized modifications for vendors willing to make it
work. While SafeFrame is absent of any specific features to support header bidding,
guidance is provided to simplify the use of SafeFrame in a pre-bid context. In addition,
work with header bidding technology providers has been done to encourage new
features that communicate the presence of SafeFrame and operational conduct that
guides the handling of SafeFrames.

● Security: Guidance for host implementation highlights taking advantage of browser
security features such as HTML sandboxing and feature policy. These security features
further prevent ad access to sensitive page data while enabling additional ad
interactions.

● MRAID Alignment: SafeFrame 2.0 was modified to align with the nomenclature and
syntax of MRAID to enable easier conversion between MRAID ads used in mobile native
and SafeFrame used in web and web-based apps.

● Measurement: SafeFrame 1.0 was developed to support third party measurement in
addition to ad functionality while encapsulated in an iframe. SafeFrame 2.0 was
designed to focus on ad interactions while recommending other solutions for
measurement.

● Simplicity: The scope of SafeFrame 2.0 is reduced to only focus on ad interactions in
web and web-based apps while allowing for the support of other specialized services,
such as measurement. To enable more flexibility for host implementations, the host
requirements have been replaced with guidance for API implementation.

● Compatibility: The updates in SafeFrame 2.0 make it incompatible with previous
versions. While this incompatibility was approved, guidance is to be provided on
supporting version 1.1 simultaneously with version 2.0 during a transition period up until
previous versions are deprecated.

Scope
The scope of this documentation for SafeFrame 2.0 is limited to technical feature description for
the ad SDK. Additional guidance is provided for publisher implementation. Some guidance is
also provided to help vendors support ad request and delivery, especially with regard to header
bidding and other programmatic services.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 7

Out of Scope
For the sake of clarity on what SafeFrame 2.0 offers, the following is considered out of scope:

● Ad request and delivery: SafeFrame doesn’t specify how the ad is requested or
delivered. However, guidance is offered around best practices for efficient delivery.

● Integration: SafeFrame does not define any objects, methods, or properties other than
those to create, manipulate, and manage an iframe container. However, guidance to
support further functionality, such as additional security, UI elements, etc. may be
covered to enable adoption, but are not defined as part of SafeFrame 2.0.

● Non-Browser Implementations: This version of the SafeFrame is limited to JavaScript-
formatted, browser-based implementations. SafeFrame may function within applications,
such as those used in mobile devices (native), but details for non-browser based
implementations are not included.

Summary of Release Versions
A history of updates for SafeFrame is summarized in the following table.

Version number Date Summary

2.0 3/24/2020 Several updates for simplicity and flexibility.

1.01 4/16/2013 Minor name corrections

1.0 3/18/2013 Original

Benefits
Since its initial release in 2013, SafeFrame offered secured ad operation on a page without
adding additional code. Instead of slowing down a page and risking broken page function with
added creative code, ads could include the API calls that communicate with a page-hosted
SafeFrame.

SafeFrame 2.0 continues to offer all the benefits that come from this simplified arrangement for
ad placement, but improvements with this release were designed to encourage more
widespread adoption.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 8

Page Security
While SafeFrame opens up communication between the page and the ad, the SafeFrame host
controls what information is accessed or shared, if any, and to whom.

Stability
As with standard iframes, the clear delineation between a publisher's webpage and the ad
creative reduces the chance for bugs in rendering content or interference with the publisher's
JavaScript and HTML code. Because the ad is rendered with its own HTML document, its own
set of CSS rules, and its own JavaScript, it cannot directly interact or override the publisher's
JavaScript, HTML, or CSS.

Since code interference between the two parties is contained within the SafeFrame, the two
parties can interact in a controlled and transparent way using the SafeFrame API.

Transparency
Data shared using the SafeFrame API enables ad insight for functionality and performance
reporting.

Scale
The more an ad requires interaction with a publisher's page, the more ops-heavy the
arrangement is to certify partners who are allowed to add script directly on the webpage.
Despite lengthy certification and added cost, direct placement on a webpage compromises page
security. Even if the advertiser and their vendors mean no ill will, ad script can still interfere with
page function. The safety provided with a SafeFrame implementation scales a publisher's ability
to increase yield without sacrificing safety. The increased supply may also help reduce costs to
advertisers.

How It works
A SafeFrame is a cross-domain iframe hosted by a publisher and used as a container for ad
interaction that prevents the ad from directly accessing publisher page content. Using an API,
the publisher responds to requests the ad makes using the SafeFrame SDK.

For example, when a user interacts with the ad to prompt an expansion, the ad can request that
the host expand the SafeFrame to new specified dimensions. Likewise, the ad can request
feedback on the resulting current size and position of the SafeFrame.

This interaction is made up of a few working parts: the host main page, a cross-origin iframe,
the API, and the ad creative (previously known as the external party).

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 9

Host Main Page
The SafeFrame host is typically a publisher platform implemented to restrict direct access to a
webpage. The protected webpage is a “parent page” on which a cross-domain iframe is used to
contain ad content.

Cross-Origin iFrame
The host sets up a cross-origin iframe in a publisher-hosted secondary domain. Taking
advantage of the restrictions created by containing content in a cross-origin iframe, SafeFrame
uses an API to allow communication between the contained ad content and the parent page
without allowing direct access.

SafeFrame API
The SafeFrame API is a protocol that enables communication between ad scripts running inside
a host-implemented iframe and the parent page on which the iframe is placed. The API is
flexible enough to enable most rich ad function while protecting the parent page.

Ad Creative
Known as the “external party content” in the previous versions of SafeFrame, the ad creative is
the content served into a SafeFrame-supported iframe. Developers who design ads can use a
SafeFrame SDK to enable interaction on a webpage using the SafeFrame API. Each
SafeFrame implementation can be customized to a publisher’s unique requirements. The ad
can design for a full set of features with the ability to gracefully degrade when certain features
aren’t supported.

Using Browser Security Features
Browser technology has introduced many new features over the years since the first SafeFrame
release. While SafeFrame offers a secure interactive ad experience, unwanted behaviors such
as auto-redirects and automatic downloads are difficult to prevent with SafeFrame alone. On the
other end of the security spectrum, enabling features such as access to the microphone for ads
that respond to voice is difficult from an isolated iframe.

Sandboxing is an W3C feature that restricts certain behaviors while Feature Policy is a standard
web feature that allows selective access to certain features. SafeFrame 2.0 encourages the use
of these existing features to extend the security and functionality of SafeFrame.

Sandboxing
The HTML5 sandbox feature adds an extra set of restrictions to an ad served into an iframe. It
prevents malicious or otherwise unwanted ad behaviors such as: auto-redirect, modal dialog or

https://www.w3schools.com/tags/att_iframe_sandbox.asp

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 10

new page pop-ups, automatic downloads, or plug-in exploits. Adding select values can maintain
most of the sandbox restrictions while allowing certain interactions for improved ad function.

Sandboxing is applied in the cross-origin iframe set up for the SafeFrame implementation. The
recommended setup is to enable the following properties:

● Allow-top-navigation-by-user-activation: if redirects are allowed only when the user
initiates.

● Allow-popups-to-escape-sandbox: if the ad is allowed to open new windows without
inheriting the sandbox.

● allow-forms: if the ad creative needs to support form submissions.
● allow-scripts: if the ad creative needs to run Javascript.
● allow-same-origin: if the ad creative needs to access same-origin resources hosted

outside of the ad iframe, such as for ad measurement.
● allow-popups: a misnomer, this flag allows support for opening a new page only after

the user clicks a link. The ad is still subject to the browser's pop-up blocking settings and
any pop-ups cued by user interaction.

Feature Policy (Permission Policy)
The HTTP Feature Policy header by Mozilla enables publishers to allow or deny certain features
such as access to camera, geolocation, document-domain, microphone and others. The full list
of features can be accessed on Mozilla’s developer site. Rather than restrict certain features
such as with sandboxing, the feature policy allows access to certain features as set by the
SafeFrame host.

By default, all available features are disabled to prevent malicious behavior. One example of
malicious behavior is an ad that checks whether a device is charging before launching a
malware download. On the other hand, an ad that uses voice control would need access to the
microphone to function properly.

Enabled in the cross-origin iframe set up by the SafeFrame implementation, allowing access to
most features protect the parent page, but some features may enable malicious behavior that
affects the device. The host should consider how access to each feature might affect
performance.

To allow access to select features, use the “allow” attribute in iframes to specify a “directive”
(feature) and an “allowlist" to specify domains that may access the feature. Visit the Feature
Policy page for more details about setup.

Header Bidding
Header bidding is a process that executes before SafeFrame is implemented. While SafeFrame
ad placement is often rejected in the header bidding process, support for enabling SafeFrames
in header bidding must be part of the process outside of the SafeFrame API.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy#Directives

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 11

Work is being done to support SafeFrame among some of the leading header bidding providers.
Features have been proposed that communicate whether an ad will be placed in a SafeFrame,
whether an ad is SafeFrame-equipped, and the details around the specific implementation (such
as version number). By the time SafeFrame 2.0 is ready for full release, guidance will be
available around a specific features to use and the best practices for using them.

Please contact support@iabtechlab.com to provide feedback and suggestions as we further
develop the guidance around header bidding.

mailto:support@iabtechlab.com

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 12

SafeFrame 2.0 Technical Details
A SafeFrame is an API controlled iframe that passes information between a webpage and an
iframe. The iframe is on a cross-origin domain that the API host (typically the publisher)
controls. Ads served into the SafeFrame can provide a rich ad experience for users with page
interactions communicated using the API while the publisher blocks direct page access and
protects sensitive data.

This documentation provides information on how ad developers can make use of the
SafeFrame API to offer an interactive ad experience that honors the page on which it is run.

Change Log
SafeFrame 2.0 includes significant changes from its last release in 2014. These changes are
detailed below.

Change Description

Host Implementation The host implementation details have been removed. The host may
support SafeFrame using technology and operational practices best
suited to company policies and capabilities.Guidance for
implementation will be provided upon final release

Alignment with MRAID Several functions have been modified, added, or deprecated so that
SafeFrame aligns more closely with MRAID. This change enables a
more simple transition from one ad standard to the other.

Modified features The following existing features have been modified:

● supports(): name changes for features supported
● meta(): standardized header tags identified for simplified

meta requests
● expand(): operationally expands to maximum size allowed

(the total viewport size in most cases), get/set
ExpandProperties instead of to specified parameters

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 13

Change Description

Removed features The following features have been removed:

● register(): replaced with addEventListener()
● collapse(): replaced with close()
● _status_update(): replaced with addEventListener()
● geom(): replaced with getDefaultPosition(),

getCurrentPosition(), getScreenSize() and getMaxSize()
● inViewPercentage(): replaced with recommendation to use

IntersectionObserver.

Added features The following features have been added:

● getVersion(): support for updates
● addEventListener(): replaces register() and

status_update()
● removeEventListener(): complements addEventListener()
● close(): replaces collapse()
● unload(): supports request to have ad removed
● get/set ExpandProperties(): replaces setting parameters in

expand() function
● getState(): replaces status() and partly _status_update()
● getCurrentPosition(): replaces geom().self
● getDefaultPosition(): new feature
● getMaxSize(): replaces geom().ext
● getScreenSize(): replaces geom().win

Managing the SafeFrame
Depending on the host implementation, an ad will either be served directly into a SafeFrame or
the host may place a URL in the SafeFrame that calls for the ad as the SafeFrame is loaded.

Initialize

- Check the environment
- Check what the host supports
- Ask for metadata needed for ad operation

Monitor SafeFrame size and position

- Add an event listener for specific events
- Request details when an event occurs
- Set new properties and initiate a task

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 14

Resize the SafeFrame container
Resizing an ad in MRAID is executed differently than resizing an ad designed for SafeFrame.
To allow for simplified conversion of an MRAID ad to a SafeFrame ad, we've added and
changed components that support resizing as executed in MRAID. This support enables a
simple namespace change for conversion.

While support for MRAID resizing enables easy conversion, ad developers may want to use the
simpler approach designed for SafeFrame. If you are developing ads that won't be used in
mobile and an MRAID conversion is not needed, support for the SafeFrame technique is also
included.

The two resizing methods are detailed in the following sections.

Resize - MRAID Alignment
An MRAID ad treats resize and expand differently. Resizing allows for dimensions to be
specified for the new ad size. Expanding simply expands to the full amount of space available.

MRAID-style Resize in SafeFrame

- Set resize properties
- Call resize() method
- Check resize properties: getCurrentPosition

MRAID-style Expand in SafeFrame

- Expand to maximum allowed size (usually the viewport size)

Resize - Web Only
If you're developing an ad that doesn't need to make use of MRAID, you can use the SafeFrame
method to resize.

SafeFrame resize (expand)

- Call expand() with attributes that set the updated size

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 15

Using Intersection Observer
One of the guiding principles for developing SafeFrame was to allow for reporting on viewability.
In SafeFrame 2.0, the focus is on ad interaction and security. Measurement and checking for
viewability is often managed by vendors, and now with the use of Open Measurement for Web.

The inViewPercentage() method was removed in SafeFrame 2.0, but using the Intersection
Observer API, you can observe the intersection between two elements--in the case of
SafeFrame, the iframe element and the browser viewport. You can use the API to signal when
the SafeFrame is a given percentage in view or whether it is close to being in view (using
margins).

Using the returned values from the Intersection Observer API, you can trigger certain creative
actions, such as animating a graphic when only a certain percent of the SafeFrame is in view.
You can also create a parallax effect. While limited to working with large ads that intersect the
edges of the browser viewport, the effect offers functionality that was difficult to achieve with the
SafeFrame API.

Guidance on ways to use the Intersection Observer API in the context of SafeFrame is in
development to help improve adoption.

Initialization
Initialization in SafeFrame 2.0 is asynchronous, which means that the API must load (event
listener reports 'ready') before the ad can be executed.

Example
function safeFrameIsReady() {
 $sf.ext.removeEventListener('ready', safeFrameIsReady);
 doSomething();
}

if ($sf.ext.getState() === 'loading') {
 $sf.ext.addEventListener('ready', safeFrameIsReady);
} else {
 safeFrameIsReady();
}

Namespace
$sf

The SafeFrame namespace separates creative functions from other functions. For example,
syntax for the function getVersion() is $sf.getVersion().

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 16

SF_ENV
The ad creative can request information about the environment in which the SafeFrame is
rendered. The meta() feature can also be used to request additional information that the
publisher is willing to provide.

Example
SF_ENV = {
 version: ‘2.0’,
 sdk: ‘Host party implementation name’,
 sdkVersion: ‘1.0.0’,
}

getVersion()
Returns the SafeFrame version that the host is using.

Syntax var version = $sf.getVersion();

Availability Synchronous

Parameters none

Returns A string that represents the SafeFrame version that the host is using.
Example: "2.0"

Compatibility New in SafeFrame 2.0. Aligns with MRAID.

Related SF_ENV

supports()
Returns an object with keys representing what features have been turned on or off for this
particular container.

Syntax var bool = $sf.supports(feature)
var supportedFeatures = $sf.supports()

Availability Synchronous

Parameters feature (string)

Returns Object containing a list of SafeFrame container features that are
available (see Object Values list below)

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 17

Compatibility Modified from SafeFrame 1.1. Available object values have been
updated.

Related

Object Values
The feature support list includes the following values:

{Boolean} expand

Whether or not ad expansion is allowed. Default value is true.

{Boolean} resize

Whether or not ad resize is allowed. Default value is true.

{Boolean} resize-push

Whether or not resizing is allowed in push mode, which pushes page content as the
ad expands rather than expanding over the content. Support is dependent on host
capabilities. Default value is false.

{Boolean} read-cookie

Whether or not the host allows external party content to read host cookies. The host
must respect user privacy settings according to the policies in place before allowing
cookie-read. Despite possible value of true, the host may reject cookie values if
policy or privacy settings restrict 3rd party access to data. Default value is false.

{Boolean} write-cookie

Whether or not the host allows external party content to write cookies to the host
domain.The host must respect user privacy settings according to the policies in place
before allowing cookie-write. Despite possible value of true, the host may reject
cookie values if policy or privacy settings restrict 3rd party access to data. Default
value is false.

meta()
Used to retrieve metadata about the context of the SafeFrame specified by the host. This
function allows access to certain meta tags without allowing page access.

Syntax $sf.meta(propertyName, ownerKey)

Availability synchronous

Parameters propertyName: a string containing the metadata name for which value is
to be read
ownerKey: a string containing the owner object from which to read the
property. Default value is "shared" meaning that it is common data.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 18

Returns String | Number | Boolean

Compatibility SafeFrame 1.1.

Related supports()

Example: 1 - Retrieve a shared metadata value

//External Party JavaScript code (inside SafeFrame container)

 var posID = $sf.meta("pos");

Example: 2 - Retrieve a non-shared metadata value

//External Party JavaScript code (inside SafeFrame container)
//"rmx" == owner of metadata blob, "sectionID" is key to retrieve

 var sectionID = $sf.meta("sectionID", "rmx");

SafeFrame 2.0 Properties
SafeFrame property functions allow for querying the host on the state, position, and size of the
SafeFrame. You can also set expand and resize properties. These property functions are
described in this section.

get/set ExpandProperties()
Checks expand width and height (get) or sets expand properties to desired width and height for
running expand function (set).

Syntax var expandProperties = $sf.getExpandProperties()
$sf.setExpandProperties({width, height})

Availability synchronous

Parameters ● width: number (in pixels) indicating adjusted width for SafeFrame
container. Default is the full width of the viewport.

● height: number (in pixels) indicating adjusted height for
SafeFrame container. Default is the full height of the viewport.

Returns void

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 19

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0.

Related resize()
getMaxSize()
getState()

get/set ResizeProperties()
Resizes the container to the specified dimensions. This can be called multiple times with
different dimensions.

Syntax var resizeProperties = $sf.getResizeProperties()
$sf.setResizeProperties({width, height, x, y,
allowOffscreen, push})

Availability synchronous

Parameters ● width: number (in pixels) that specifies width for SafeFrame
container resize.

● height: number (in pixels) that specifies height for SafeFrame
container resize.

● x: the horizontal delta from the current upper-left position to the
desired resize upper-left position of the ad container. Positive
integers move right; negative integers move left.

● y: the vertical delta from the current upper-left position to the
desired resize upper-left position of the ad container. Positive
integers move down; negative integers move up.

● allowOffScreen: (optional) Boolean value that indicates whether
the resized ad container must be allowed to be drawn partially or
fully offscreen.

- true: offscreen positioning is allowed; host must refrain
from repositioning ad container despite resulting in
offscreen placement.

- false: offscreen positioning must be avoided and the host
must attempt to reposition the ad container.

● push: (optional) Boolean value that specifies whether the
resizing of the ad container should “push” the content or overlay
it. Push mode has to be explicitly supported by the host. Default:
false.

Returns void

Compatibility New in SafeFrame 2.0, but provides similar functionality to expand() API
in SafeFrame 1.1. Aligns with MRAID 3.0, with the following differences:

● “offsetX” and “offsetY” resize properties are renamed to “x” and
“y”.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 20

● “push” property is added to ensure compatibility with push
expansion in SafeFrame 1.1.

Related resize()

getState()
Returns current state of the SafeFrame container.

Syntax var state = $sf.getState()

Availability synchronous

Parameters none

Returns a string with one of the following values:
● loading
● default
● expanded
● resized
● hidden

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0. Replaces status() in
SafeFrame 1.1.

Related

getCurrentPosition()
Returns information of the current position of the ad container in pixels. Coordinates (x, y) are
from the top left corner of the rectangle defining getMaxSize().

Syntax var currentPosition = $sf.getCurrentPosition()

Availability synchronous

Parameters none

Returns Object with the following values:
● x: the leftmost x-coordinate of the SafeFrame container
● y: the uppermost y-coordinate of the SafeFrame container
● width: the width of the SafeFrame container
● height: the height of the SafeFrame container

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0.

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 21

Replaces "self" property of the object returned in $sf.geom() in
SafeFrame 1.1.

Related inVewPercentage()

getDefaultPosition()
Returns information about the default position of the ad container in pixels. Coordinates (x, y)
are the top left corner of the SafeFrame container assigned as the default position.

Syntax var defaultPosition = $sf.getDefaultPosition()

Availability synchronous

Parameters none

Returns Object with the following values:
● x: the leftmost x-coordinate of the SafeFrame container
● y: the uppermost y-coordinate of the SafeFrame container
● width: number in pixels representing the width of the SafeFrame

container at its default size
● height: number in pixels representing the height of the

SafeFrame container at its default size

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0. Replaces $sf.geom() in
SafeFrame 1.1.

Related getCurrentPosition()
getState()

getMaxSize()
Returns the maximum width and height dimensions allowed for expanding the SafeFrame
container. May be equal to the viewport size or smaller, depending on the host implementation.

Syntax var maxSize = $sf.getMaxSize()

Availability synchronous

Parameters none

Returns Object with the following values:
● width: number in pixels representing the maximum width allowed

for expanding the SafeFrame container
● height: number in pixels representing the maximum height

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 22

allowed for expanding the SafeFrame container

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0. Replaces “exp” property
of the object returned from $sf.geom() in SafeFrame 1.1.

Related expand()

getScreenSize()
Returns the size of the bowser window or viewport.

Syntax var screenSize = $sf.getScreenSize()

Availability synchronous

Parameters none

Returns Object with the following values:
● width: number in pixels representing the width of the view port.
● height: number in pixels representing the height of the view port.

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0. Note that the function
uses "screen size" but the "screen" in web is the browser window.

Related getMaxSize()

SafeFrame 2.0 Events
In SafeFrame 2.0, the register() function is replaced with an event listener. Using the event
listener, you can specify events for which you'd like notification. You can also remove events
previously added. The addEventListener() and removeEventListener() are described in the
Methods section.

The following events can be added to the event listener:

● error
● ready
● sizeChange
● exposureChange
● metaChange

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 23

error
Provides information about failed attempts to perform a task. The ad must register a listener in
order to receive error events. Any number of listeners can monitor for errors of different types so
that the ad can respond as needed.

An error event offers two parameters: one for an error message and one for the action being
attempted at the time the error occurred. Both parameters are optional and the message option
is typically used for debugging pre-flight creative.

Syntax $sf.addEventListener(‘error’, function(message, action)
{});

Parameters ● message: (string) description of the error that occurred
● action: (string) name of SafeFrame API invoked when the error

occurred

Triggered by Any SafeFrame API

Compatibility Replaces “failed” status update in SafeFrame 1.1. Aligns with MRAID
3.0.

Related addEventListener()
removeEventListener()

ready
Provides notification when SafeFrame is ready.

Syntax $sf.addEventListener(‘ready’, function() {});

Parameters none

Triggered by SafeFrame API is fully loaded and ready to be used.

Compatibility Replaces synchronous initialization mechanism in SafeFrame 1.1 using
$sf.register() with asynchronous event. Aligns with MRAID 3.0.

Related getState()

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 24

sizeChange

Syntax $sf.addEventListener(‘sizeChange’, function(width, height)
{});

Parameters ● width: (number) the width of the ad container
● height: (number) the height of the ad container

Triggered by Change in the ad container width and height dimensions resulting from
resize, expand or close.

Compatibility Replaces “geom-update” status update in SafeFrame 1.1. Aligns with
MRAID 3.0.

Related expand()
resize()
getCurrentPosition()
addEventListener()
removeEventListener()

stateChange
If registered with an event listener, notifies ad creative when a change in the state of the
SafeFrame container changes and provides the resulting updated state.

Syntax $sf.addEventListener(‘stateChange’, function(state) {});

Parameters state: (string) indicating either "loading", "default", "expanded", “resized”,
or “hidden”

Triggered by Calling expand(), reize(), close(), or when the host does something that
changes the state of the ad container.

Compatibility Replaces “expand” and “collapse” status updates in SafeFrame 1.1.
Aligns with MRAID 3.0.

Related getState()
addEventListener()
removeEventListener()

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 25

metaChange

Syntax $sf.addEventListener(‘sizeChange’, function(propertyName,
propertyValue) {});

Parameters propertyName:
propertyValue:

Triggered by

Compatibility

Related

SafeFrame 2.0 Methods
SafeFrame methods are sent to the host to request an action to which the host then executes.

addEventListener()
Method that initializes an event listener that provides notification when a specified event has
occurred. This function replaces the process that used $sf.register() and $sf._status_update() in
SafeFrame 1.1. The event listener allows for more granular event listening.

Syntax $sf.addEventListener(event, listener)

Availability synchronous: the event listener is added synchronously, but the events
are provided asynchronously

Parameters ● event: (string) the SafeFrame event for which the listener should
listen

● listener: (function) the function that the listener should use

Returns void

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0. Replaces the process
that used $sf.register() and $sf._status_update() in SafeFrame 1.1.

Related removeEventListener()

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 26

RemoveEventListener()
Removes listeners for SafeFrame events previously registered using addEventListener().

Syntax $sf.removeEventListener(event, listener)

Availability synchronous

Parameters ● event: (string) the SafeFrame event the listener should remove
● listener: (function) the function for removing the listener

Returns void

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0.

Related addEventListener()
error()
ready()

close()
Moves previously expanded or resized ad into its default state. When called in the default state,
it changes the state to "hidden" and hides the ad. Replaces $sf.collapse() in SafeFrame 1.1.

Syntax $sf.close()

Availability asynchronous

Parameters none

Returns void

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0.

Related resize()

unload()
A request to the host to unload the ad from the SafeFrame. The host may respond by removing
the ad and replacing it or by removing the ad placement altogether.

Syntax $sf.unload()

Availability asynchronous

Parameters none

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 27

Returns void

Compatibility New in SafeFrame 2.0

Related

expand()
Expands the SafeFrame container to the maximum available space (see getMaxSize()). This
can be called only when in the default state.

Syntax $sf.expand()
$sf.expand(expandProperties)

Availability asynchronous

Parameters none

Returns void

Compatibility In SafeFrame 1.1 the method supports parameters indicating size and
direction of the expansion. Those were removed and behavior is
changed to expand to the maximum available space.

Aligns with MRAID 3.0.

Related resize()
getMaxSize()
getState()

resize()
Resizes the container to the specified dimensions using the resizeProperties object. This can be
called multiple times with different dimensions.

Syntax $sf.resize()
$sf.resize(resizeProperties)

Availability synchronous

Parameters resizeProperties: an object (optional) that specifies settings for the
resize.

Returns void

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 28

Compatibility New in SafeFrame 2.0. Aligns with MRAID 3.0.

Related get/set ResizeProperties()

Example: resizeProperties object
{
 width: 300,
 height: 250,
 x: 0,
 y: 10,
 allowOffscreen: true,
 push: false}

cookie(cookieName, cookieData)
If the host supports cookie read/write, cookie data may be passed through the SafeFrame API.
The host must respect user privacy settings according to its policies and the governing region in
which it operates. Even if the host allows this feature, third party access to users' personal data
may be restricted, in which case the host will reject any cookie read or write requests.

Syntax var cookieValue = $sf.cookie(cookieName)
$sf.cookie(cookieName, {})

Availability asynchronous

Parameters cookieName: a string for the cookie being requested
cookieData: (optional) An object that contains the value, and potentially
an expiration date, of a cookie to be set. Without the cookieData object,
a read only is being requested. To write a cookie, details are provided as
follows:

● cookieData.info: a string for the cookie to be written
● cookieData.expires: (optional) an expiration date for the cookie

Returns string | void

Compatibility No change from SafeFrame 1.1.

Related supports()

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 29

Example 1: Reading a Host Cookie
//Sample JavaScript implementation
var w = window, sf = w[“$sf”], sfAPI = sf && sf.ext, myPubCookieName =
“foo”, myPubCookieValue = “”, fetchingCookie = false;

function register_content()
{
 var e;
 try {
 if (sfAPI) sfAPI.register(300,250,status_update_handler);
 } catch (e) {
 //console.log(“no sfAPI -- > “ + e.message);
 sfAPI = null;
 }
}

function get_host_cookie()
{
 var e;

 try {
 if (sfAPI && sfAPI.supports(“read-cookie”)) {

fetchingCookie = sfAPI.cookie(“foo”);
 }
 } catch (e) {
 fetchingCookie = false;
 }
}

function status_update_handler(status, data)
{
 if (status == "read-cookie") {
 myPubCookieValue = data;
 //now do whatever here since you have the cookie data
 }
}

IAB Tech Lab – SafeFrame 2.0 (Draft for public comment) 30

Example 2: Writing a host cookie
//Sample JavaScript implementation
var w = window, sf = w[“$sf”], sfAPI = sf && sf.ext, myPubCookieName =
“foo”, myPubCookieValue = “”, settingCookie = false;

function register_content()
{
 var e;
 try {
 if (sfAPI) sfAPI.register(300,250,status_update_handler);
 } catch (e) {
 //console.log(“no sfAPI -- > “ + e.message);
 sfAPI = null;
 }
}

function set_host_cookie(newVal)
{
 var e, cookieData = {value:newVal,expires:new Date(2020, 11, 1)};

 try {
 if (sfAPI && sfAPI.supports(“write-cookie”)) {

settingCookie = sfAPI.cookie(“foo”, cookieData);
 }
 } catch (e) {
 settingCookie = false;
 }
}

function status_update_handler(status, data)
{
 if (status == "write-cookie") {
 myPubCookieValue = data.info;
 //now do whatever here since the write was successful
 } else if (status == “failed” && data.cmd == “write-cookie”) {
 //data.cmd contains original command sent
 //data.reason contains a description of failure
 //data.info contains the object of information sent to host
 settingCookie = false;
 //cookie not allowed to be set
 }
}

--End--

	Audience 5
	Updates 6
	Scope 6
	Out of Scope 7
	Summary of Release Versions 7
	Page Security 8
	Stability 8
	Transparency 8
	Scale 8
	Host Main Page 9
	Cross-Origin iFrame 9
	SafeFrame API 9
	Ad Creative 9
	Sandboxing 9
	Feature Policy (Permission Policy) 10
	Change Log 12
	Resize the SafeFrame container 14
	Resize - MRAID Alignment 14
	Resize - Web Only 14

	Using Intersection Observer 15
	Namespace 15
	SF_ENV 16
	getVersion() 16
	supports() 16
	meta() 17
	get/set ExpandProperties() 18
	get/set ResizeProperties() 19
	getState() 20
	getCurrentPosition() 20
	getDefaultPosition() 21
	getMaxSize() 21
	getScreenSize() 22
	Summary
	Audience
	Updates
	Scope
	Out of Scope
	Summary of Release Versions

	Benefits
	Page Security
	Stability
	Transparency
	Scale

	How It works
	Feature Policy (Permission Policy)

	Header Bidding
	SafeFrame 2.0 Technical Details
	Change Log

	Managing the SafeFrame
	Resize the SafeFrame container
	Resize - MRAID Alignment
	Resize - Web Only

	Using Intersection Observer

	Initialization
	Namespace
	meta()
	Example: 1 - Retrieve a shared metadata value
	Example: 2 - Retrieve a non-shared metadata value

	SafeFrame 2.0 Properties
	get/set ExpandProperties()
	get/set ResizeProperties()
	getState()
	getCurrentPosition()
	getDefaultPosition()
	getMaxSize()
	getScreenSize()

	SafeFrame 2.0 Events
	error
	ready
	sizeChange
	stateChange
	metaChange

	SafeFrame 2.0 Methods
	addEventListener()
	RemoveEventListener()
	close()
	unload()
	expand()
	resize()
	cookie(cookieName, cookieData)

