
ads.cert Open Source
Software Design Doc

January 2022

Presented by the IAB Tech Lab Cryptographic Security Foundations working group
Please email support@iabtechlab.com with feedback or questions. This document is
available online at https://iabtechlab.com/standards/ads-cert/

© IAB Technology Laboratory

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

Program Leaders:

Curtis Light, Staff Software Engineer - Google

Rob Hazan, Senior Director, Product - Index Exchange

Other Significant Contributions from:

Ben Antier, CEO - Publica

Nabhan El-Rahman, CTO - Publica

Joshua Gross, Senior Engineering Lead - Index Exchange

Bret Ikehara, Staff Software Engineer, Publica

Johnny Li, Software Engineer, Index Exchange

Amit Shetty, Programmatic Products & Partnerships - IAB Tech Lab

Sam Mansour, Principal Product Manager - Moat

Miguel Morales, CTO & Co-Founder - Lucidity Tech

Colm Geraghty, Principal Architect - Verizon Media Group

Mani Gandham, Engineering - Index Exchange

James Wilhite, Director of Product management, Publica

IAB Tech Lab Lead:

Amit Shetty

VP, Programmatic Products & Partnerships - IAB Tech Lab

About IAB Tech Lab
The IAB Technology Laboratory (Tech Lab) is a non-profit research and development

consortium that produces and provides standards, software, and services to drive growth of an

effective and sustainable global digital media ecosystem. Comprised of digital publishers and ad

technology firms as well as marketers, agencies, and other companies with interests in the

interactive marketing arena, IAB Tech Lab aims to enable brand and media growth via a

transparent, safe, effective supply chain, simpler and more consistent measurement, and better

advertising experiences for consumers, with a focus on mobile and TV/digital video channel

enablement. The IAB Tech Lab portfolio includes the DigiTrust real-time standardized identity

service designed to improve the digital experience for consumers, publishers, advertisers, and

third-party platforms. Board members include AppNexus, ExtremeReach, Google, GroupM,

Hearst Digital Media, Integral Ad Science, Index Exchange, LinkedIn, MediaMath, Microsoft,

Moat, Pandora, PubMatic, Quantcast, Telaria, The Trade Desk, and Yahoo! Japan. Established

in 2014, the IAB Tech Lab is headquartered in New York City with an office in San Francisco

and representation in Seattle and London.

Learn more about IAB Tech Lab here: www.iabtechlab.com

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

TABLE OF CONTENTS

Documentation links ... 1

Executive Summary .. 1

Objective .. 1

Requirements .. 2

Functional .. 2

Non-functional.. 2

Out of scope .. 3

Related work .. 3

Original ads.cert efforts... 3

Email security protocols .. 4

Prior designs .. 4

Glossary... 5

Integrator-visible terms... 5

Terms internal to open source implementation ... 5

Infrastructure ... 6

Core Golang open source software application .. 6

Containerization tools ... 6

Storage platform ... 6

Secrets management platform ... 6

Success criteria ... 7

Industry adoption .. 7

Reliability and performance .. 7

Invalid/unauthorized traffic reduction.. 8

False-positive rejection/filtration performance.. 8

Actionable security risk reports .. 8

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

Protocol resource overhead .. 9

Ease of implementation .. 9

Administration overhead .. 9

Detailed design ...10

Component architecture ... 10

Fully in-process and all-in-one ads.cert server implementation process flow 11

Persistent, centralized DNS refresh management option... 12

Public key distribution ... 14

DNS record format ... 14

Generating a key ... 15

Securely storing keys .. 15

Integrator API .. 21

API initialization and configuration .. 22

API utilization ... 22

Calling backend signatory RPC server ... 23

Signatory RPC service IDL .. 23

DNS interest loop .. 25

Persistence .. 26

Deriving shared secrets ... 27

Signed message construct ... 27

Message variations for abnormal operations .. 29

Server deployment .. 30

Runtime configuration.. 30

Identity and Access Management (IAM) integration ... 30

Application container ... 31

Batch operation.. 31

Project information ..31

Code location... 31

Repository layout .. 32

Code review and change management procedures ... 33

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

Open source software dependencies ... 33

Vulnerability disclosure process .. 33

Measuring improvements ..33

Caveats ...34

Monitoring ..34

Infrastructure .. 34

Signatory API operational and performance metrics.. 35

DNS refresh loop metrics .. 35

Counterparty participation and performance analytics ... 35

Crawl quality .. 35

Latency ...36

Signing/verification latency objectives ... 36

DNS fetch latency .. 36

Application startup-to-healthy latency ... 37

Scalability ...37

Microbenchmarks ... 37

Load expectations and testing .. 37

Responsiveness to traffic shifts ... 37

Internationalization ..37

User messaging ... 37

Domains ... 38

Documentation ... 38

Logging plan ...38

DNS crawl logging .. 38

Auditable security events .. 38

Failure modes ...39

Serving-related failures ... 39

Integrator stub failure to connect to RPC signer ... 39

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

RPC signer overload/latency increase .. 39

Memory exhaustion of indexing quota .. 39

Failure to index updates .. 39

HTTP request related failures ... 40

DNS related failures... 40

KMS related failures .. 40

Redundancy and reliability ..41

Dependency considerations ..42

DNS recursive resolver unavailability .. 42

Risk considerations and mitigations ..42

Impact to DNS recursive resolvers .. 42

Data integrity ..42

Preventing loss of private key material ... 42

Preventing loss of DNS crawl responses ... 42

Data retention ...42

DNS crawl responses ... 42

SLA requirements ..43

DNS unavailability tolerances.. 43

Security considerations ...43

Cryptanalysis ... 43

Signature collision risk ... 43

In-memory secrets protection .. 44

Availability risks ... 45

Key compromise risks .. 46

RPC server signer deployment risks .. 47

DNS integrity risks ... 47

Message attack risks ... 47

Parameter Pollution ... 48

Server-side request forgery (SSRF) risks ... 48

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

Open source supply chain attack risks .. 48

Insider risks .. 49

Cryptographic agility ... 50

Spam and abuse considerations ...50

HTTP request header spam ... 50

Invalid signature spam .. 50

Privacy considerations ..51

Avoiding public key signing over consumer activity ... 51

Preventing using ads.cert for B2B non-repudiation.. 51

Logging of URL and body hashes ... 52

Product inclusion and equality ..52

Technology accessibility to businesses ... 52

Administrative controls ...52

Documentation ...53

User’s guide ... 53

Testing plan ..53

Load testing environment ... 53

OSS CI/CD environment .. 53

Test bid request traffic environment .. 53

Hosted compatibility testing solution ... 53

Work estimates ...53

Launch plans ..53

Publication of open source software suite ... 53

Integration into Prebid Server ... 54

Software release process .. 54

Rollback/degradation/safe mode strategy ..54

Alternatives considered ...54

Key distribution protocols ... 54

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert

JSON Web Keys (JWK)... 55

X.509 certificates ... 55

PKCS/PKIX standardized formats ... 56

Signature protocols ... 56

JSON Web Tokens (JWT) ... 56

TLS Mutual Authentication .. 57

Ring signatures .. 58

References ..59

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 1 of 59

Documentation links

● ads.cert Primer

● ads.cert Open Source Software Design Doc (this doc)

● ads.cert Call Signs Protocol Specification

● ads.cert Authenticated Connections Protocol Specification

● ads.cert Open Source Software Implementer’s Guide

Executive Summary

This document establishes the technical requirements and principles driving the design of the

ads.cert open source software library, which implements the Authenticated Connections

protocol and will be further leveraged to enable other ads.cert protocols in the future. It also

provides design rationale behind underlying protocols.

Objective

The refreshed ads.cert protocols published by IAB Tech Lab let advertising industry participants

secure programmatic ad buying and selling using industry-standard cryptographic security

protocols.

Rather than asking every integrator to understand and write the complex code needed to

generate and sign/verify messages adhering to these protocols, we’re providing an industrial

strength open source implementation that the community may use and improve over time which

encapsulates these details. While we publish documentation for the underlying message

formats and algorithms, we strongly encourage that implementers leverage and help us improve

this common code base where we can minimize the effort needed to adopt security within

programmatic ads.

https://github.com/IABTechLab/adscert
https://github.com/IABTechLab/adscert
https://docs.google.com/document/d/1Aq2wpQDRnCLsNWxKsiEqrBZPYWMPdPNP_XyMeJwM748/edit?usp=sharing
https://docs.google.com/document/d/1Aq2wpQDRnCLsNWxKsiEqrBZPYWMPdPNP_XyMeJwM748/edit?usp=sharing

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 2 of 59

Requirements

Functional

● Encapsulates and provides the ads.cert Authenticated Connections protocol services

● Obtains and parses counterparty public key configurations from DNS according to the

ads.cert specifications

● Generates signature strings that vouch for HTTP request originating party and message

integrity, included by the integrator within HTTP request headers

● Verifies signature strings presented by a counterparty

● Provides an operational control surface to configure/override system behavior

● Supports online and offline (logged) signature verification

Non-functional

● Deployment scalability: from 1’s to 1,000’s of ad servers signing and verifying messages

within an enterprise

● Ease of use within enterprises of all sizes, with minimal deployment overhead where

possible

● Compatible with all/most integrator software languages

● Continuity of operations: signing and verification process success should not be within

the critical path of proper advertising delivery, so resilience must be designed at all

stages, and signatures/verification should “fail fast” for individual ad requests

● Diagnostics: administrators need sufficient visibility into system operation to ensure

proper functioning and diagnose issues.

● Minimal added latency to sign requests and verify signatures

● Hermetic builds and deployment: application images need to be built and deployable in a

controlled fashion so that containerized execution environments can properly control and

secure access to secure credentials needed by the application.

● Equitable access: enterprises of all sizes and resources to investigate towards security

need to be able to benefit from this tooling with minimal investment

● Auditability: security-sensitive processes need to have auditable controls

● Security: a default deployment should benefit from robust security out-of-box, and the

guidance provided by our documentation should give best practices that have been

vetted by security experts

● Privacy: the protocols and systems should not create privacy risks to consumers, nor

should they require disclosure of proprietary information to third parties

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 3 of 59

● Testability: a well-tested software product, providing appropriate hooks for letting

integrators properly test their implementation using the libraries

● Usability: APIs should be easy to understand and difficult to use incorrectly

● Supportability: non-advertising technology businesses (e.g. publishers) may benefit from

integrating this software, but they may need guidance in doing so. An advertising

product’s support team needs to be able to help guide these parties through the

implementation process, so a simple and well-documented API should benefit this effort.

Out of scope

● The current implementation focuses on providing a minimum viable solution. Some

architectural improvements and security hardening may wait until a future iteration of the

software.

● We plan to provide conformance testing suites (if there is demand for this) to assist

parties who want to build their own independent implementation to handle these

protocols, although that will not be part of the initial implementation.

Related work

Original ads.cert efforts

We’re retaining the “ads.cert” branding established from the prior IAB Tech Lab initiative to

develop an “ads.cert Signed Bid Requests” protocol, but readers should view the current 2021

“ads.cert” as a complete departure from the design and direction pursued in the original 2018

strategy.

The main weaknesses in the first iteration of ads.cert were documented at that time (see

“Limitations and Abuse Vectors” in the original doc) and thus limited the utility of the spec. To

succeed, the specification required precise byte-for-byte reconstruction of certain critical fields

present in the bid request risking brittleness and inflexibility to adapt to the changing landscape

(e.g. privacy, identifiers) which requires intermediary canonicalization and redaction of

information to conform to privacy (e.g. IP address truncation).

Most important: the original ads.cert signing scheme provided no protections to help assure that

a bid actually got applied to the same genuine bid request origin. After implementing complex

signing protocols, opportunities still exist for bids to get applied to unrelated traffic and ultimately

circumvent the security mechanisms.

In the meantime, complementary protocol improvements have added substantial new

transparency to the ecosystem. Features such as the OpenRTB Supply Chain Object (SCO)

provide visibility into the participants facilitating the ad transaction. We have opportunities to

https://github.com/InteractiveAdvertisingBureau/openrtb/blob/master/ads.cert:%20Signed%20Bid%20Requests%201.0%20BETA.md
https://github.com/InteractiveAdvertisingBureau/openrtb/blob/master/ads.cert:%20Signed%20Bid%20Requests%201.0%20BETA.md

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 4 of 59

utilize this and other protocol improvements in upcoming standards work where we plan to

provide round-trip, mutual authentication between all parties participating in an ad impression

delivery.

Email security protocols

The original ads.cert effort was wisely inspired by the Domain Keys Identified Mail (DKIM) email

security standard that has been in use for the past decade to reduce the volume of spam and

falsified origin email. In this standard, an email system administrator creates a private key that’s

used to sign the headers and body of email messages sent by the organization’s email servers.

Receiving email servers can look up the sending server’s corresponding public key in DNS and

use it to verify the authenticity of the email origin and integrity (even if the message passed

through multiple mail transfer agents).

Complementing this protocol is the “sender policy framework” (SPF) scheme: a record within

DNS that indicates which IP addresses are permitted to forward email on behalf of a domain.

Readers familiar with ads protocols can equate SPF to the seller authorizations provided in the

ads.txt protocol, but authorizing IP addresses rather than seller IDs.

DKIM and SPF serve as a great foundation for the next generation of advertising security

protocols, so the new ads.cert adopts from them heavily.

Prior designs

Many candidate designs and substantial trial-and-error went into the protocols we ultimately

pursued.

Our original strategy for ads.cert Authenticated Connections planned to use TLS client

certificates published in a way that servers receiving server-to-server HTTPS requests could

authenticate the datacenter-originating client. The authenticating client would publish the

certificate they use at a well-known URL on their website (similar to ads.txt) which would let the

web server vouch for the authenticity of the client certificate. This automated discovery process

would bring equitable mutual authentication solutions to all ad tech participants.

Google and others have used this approach to authenticate server-to-server integrations for

many years, and this approach sounded great on paper. The main problem we encountered

when trying to trial this solution with a few of the working group member companies was that

TLS client certificates simply did not work well with cloud load balancing, CDN load balancing,

and other such solutions. While those products could support TLS mutual authentication

(mTLS) natively, they generally didn’t provide a solution. Those that did required use of a

common root certificate authority to be configured in the frontline TLS termination endpoints.

This conflicted with the self-signed certificate strategy we were trying to implement.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 5 of 59

Workarounds did exist where we could make this work for most implementers, but the solutions

were quite undesirable. One option would be to configure load balancing solutions to perform

lower “layer 4” (TCP transport level) load balancing instead of the higher “layer 7” (HTTP

application layer) balancing. This would create many undesirable risks, though, including

degradation of denial of service protections, connection hotspotting on individual servers, and

other general inefficiencies. We worried that any IAB Tech Lab specification whose guidance

included “make this intrusive change to your network topology” wouldn’t be well-received or

easy to implement by the industry. This prompted exploring other options.

Glossary

Integrator-visible terms

● Signing party

● Verifying party

● ads.cert Call Sign domain

● Operational domain

● Signature message (consisting of a “message” and “signature”)

● ads.cert keys DNS record

● ads.cert delegation DNS record

Terms internal to open source implementation

● Integrator API stub

● Signatory service

● Counterparty manager

● DNS refresh loop

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 6 of 59

Infrastructure

Core Golang open source software application

As described later, our primary product will be software libraries/servers written in the Go

software language. Go provides a controlled process for managing versioning with Go

modules, capturing direct and transitive dependency version information in a manifest submitted

alongside the application’s source code.

Go applications can cross compile onto multiple OSes and CPU architectures (even compiling

binaries intended for foreign operating systems/architectures).

We will target a minimum of Go version 1.XX (TODO: determine earliest version).

Containerization tools

Many enterprises deploy applications in containers such as Docker, and they may orchestrate

these containers using infrastructure such as Kubernetes. Communication between these

containers may be managed by a service mesh such as Envoy.

Other enterprises may not use any of those solutions, instead opting to run applications within a

bespoke system administration setup.

The tooling we provide needs to support each of these environments. An integrator should be

able to use our software in process within application code running on bare metal servers, and

the source repository should include best practice implementations of containerization scripts

such as a Dockerfile.

Storage platform

Initially we will focus on building an ephemeral deployment which doesn't persist DNS

information. We will fast-follow with an upgrade to a basic file storage solution, primarily used for

diagnostic purposes. Finally, to support distributing consistent DNS crawl information to large

application clusters, we will support storing DNS responses in a centralized database (targeting

future date). Further prototyping and experimentation will be needed to understand and design

this latter persistent solution.

Secrets management platform

Various cloud and on-prem solutions exist for securely handling secrets used by applications.

To promote security best practices, we will encourage--and make easy--the use of proper

secrets management software. In an ideal configuration, an administrative action will generate

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 7 of 59

and store the private key used in our protocols so that no person (including sysadmin) gains

access to this secret. For example, in a cloud environment, it should be possible to configure

roles and permissions so that only applications running under a specified role have access to

this secret key material. Any departures from these controls should lead to the cloud platform

logging auditable events.

Success criteria

Industry adoption

We hope to achieve 100% industry adoption where platforms (e.g. SSAI providers) and S2S

integrated publishers utilize this protocol for authentication. Similarly, we hope to achieve 100%

adoption from verfiers receiving S2S HTTPS requests where they verify all (or a representative

sample) of requests that have security significance.

To accelerate adoption, we plan to work with the Prebid.org organization and provide a Git pull

request for a Prebid Server integration that uses our open source API. Any parties currently

deploying Prebid Server should be able to quickly adopt this protocol with minimal configuration

effort.

Other bespoke client integrations should be relatively quick to bring online due to the lightweight

API provided by this OSS library.

Server integrations who receive and need to verify signatures benefit from the flexibility of being

able to perform verifications online or offline. With minimal effort, a receiving party can begin

logging the information required to verify all--or a sampling of--signatures they receive,

performing the verification step in a batch logs processing step.

Reliability and performance

The ads.cert tooling should not introduce reliability or performance degradation within

integrating applications. Most importantly, any failure or degraded performance within the

ads.cert components must not impact the integrator's continuity of operations.

Security doesn't come completely free, so we must recognize that there will be some amount of

latency and data transfer size increase, but we strive to keep it negligible.

DNS infrastructure issues are the largest risk outside of our control. We have designed the

protocols to have some resilience to extended DNS outages, especially when deployed with

application-level DNS caching. Public key versioning native to the protocols lets parties continue

to utilize prior key versions in the event that key rotation isn't successful for a subset of

counterparties.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 8 of 59

Invalid/unauthorized traffic reduction

Implementing these protocols should result in a reduction of IVT. Fewer resources should be

needed to monitor traffic for signs of illegitimate origins, especially in a forensic analyst capacity.

These protocols remove the "lowest hanging fruit" opportunities to introduce IVT, instead

pushing these activities to other surface areas.

Once fully adopted, ad platforms and advertisers should be comfortably positioned to stop

buying ads from data center traffic sources that do not participate in these protocols

It's still the buyer's responsibility to perform their due diligence on the counterparties they buy

from, as these protocols only help identify the organization originating the traffic rather than

vetting the underlying businesses legitimacy. It only takes five minutes to register an ads.cert

Call Sign domain and add the required DNS record to start sending ad requests that use this

signature scheme, so buyers should by no means trust traffic simply because it contains

validating signatures. Buyers must always build up a trust relationship with the domain signing

the ad requests.

False-positive rejection/filtration performance

Once the ads.cert Authenticated Connections protocol enjoys wide adoption, we expect that

participants may want to begin making ad buying decisions based on the signal this provides.

Participants can deploy automation to measure the signed request signature verification

success rate and use this information to inform their risk management systems. It’s important to

make sure deploying these protocols does not risk incorrectly filtering ad buying opportunities

due to a misinterpretation of client signatures: either due to signatures being incorrectly applied

by the client, or due to the server not accurately evaluating the signatures provided. A

successful system should result in little to no false-positive rejection/filtration of otherwise

legitimate traffic. The protocols and implementation should provide fast feedback to genuine

participants that some problem is present needing remediation to prevent this overfiltration risk.

Actionable security risk reports

The information security community contains many thousands of security researchers with a

keen eye for security vulnerabilities and a strong motivation to discover and disclose these

weaknesses. As a computer security protocol, ads.cert must stand up to rigorous scrutiny from

security researchers worldwide and be capable of defending against various attack vectors. No

system is completely secure, and it takes the combined effort of many creative individuals to

root out vulnerabilities in security protocols and mechanisms.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 9 of 59

We encourage security researchers to analyze, poke holes, and vet the strength of the ads.cert

protocols and corresponding open source software implementation. We ask that researchers

follow responsible disclosure procedures, allowing the maintainers to patch vulnerabilities and

distribute updates.

Security reports are an interesting success measure for opposing reasons. On one hand, not

receiving vulnerability disclosures could mean that the protocols and software stand up to

attempted abuses. On the other hand, actually receiving vulnerability reports and then

incorporating those findings into the protocols/software demonstrates that we’ve garnered

security researcher interest.

Protocol resource overhead

Factors such as bandwidth, CPU usage, and logging requirements could add costs for

implementers that might discourage adoption. Our goal is to not have resource utilization be a

material factor in deployment of these solutions.

Ease of implementation

While the core protocol logic is straightforward, it takes a non-trivial amount of time and

investment to implement this solution from scratch across every implementer. We have

attempted to encapsulate as much detail as possible behind a well-defined and intuitive API so

that implementers do not need to spend extensive time to build and debug their solution.

Additionally, we hope that this design document will provide useful material for implementers

crafting their own design documents when planning their deployment into their own application.

Administration overhead

We want to ensure that it’s easy to administer this software, especially given the need to deploy

it within organizations of all sizes. For example, a publisher using S2S and deploying ads.cert

will not have significant time to invest in tending this software. An advertising platform that

discovers counterparty relationships with thousands of domains needs to have an automated

solution that requires little-to-no intervention in dealing with exceptions. A successful solution

minimizes human intervention where possible, and it provides actionable feedback to quickly

address issues in the event they do surface.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 10 of 59

Detailed design

The system consists of:

● An API exposed to the integrating application to sign or verify HTTP requests,

● Logic for generating signatures,

● A component for maintaining a list of domains that are signature/verification

counterparties,

● A component for maintaining refreshed counterparty DNS records containing public

keys,

● An index of the shared secrets calculated from those public keys

These components integrate using different network topologies depending on the size of

deployment and data consistency requirements.

Component architecture

The system needs public keys obtained from DNS to function. A signing/verification component

uses this data to operate, signing/verifying events provided by the integrating application code.

There are three main integration scenarios. All use an identical API from the integrating

application code’s perspective, but the underlying architecture differs per deployment.

At a high level, this list summarizes the three options for deploying ads.cert within an ad delivery

environment, listed from lowest to highest degree of complexity.

● Fully in-process (ephemeral): integrator’s application maintains an in-memory cache of

counterparty shared secrets derived from DNS.

● Separated, ephemeral RPC server: the core ads.cert signing and DNS refresh logic

remain separated from the integrator’s application, useful for two key reasons:

○ Mismatch between implementation language (Golang) of the core ads.cert

signature and DNS logic versus the integrator’s application, and

○ Improves security by limiting access to the private key/shared secret material.

● Post MVP: Regionally/globally centralized, consistent RPC server with

persistence: the most complex but most consistent solution where the system

maintains a central, persistent repository of last-known-good DNS lookup information.

These processes aggregate counterparty domain lookup requests from many (potentially

thousands) of ad server processes, periodically lookup and store results from DNS in a

centralized fashion, and push updates to the serving environment. DNS crawl info gets

reused across job restarts, potentially creating a more-consistent serving behavior

across the fleet of serving jobs.

The separation of these components across applications in each scenario:

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 11 of 59

In particular, the RPC server based deployment can operate over a network so that one

instance can service many serving processes, or it can operate as a sidecar deployment.

Fully in-process and all-in-one ads.cert server implementation process flow

The ephemeral topologies in option 1 and 2 rely on ongoing ad traffic to prompt each

standalone server to re-learn the latest counterparties from DNS based on the requests it

receives and processes. Because these operate in an ephemeral mode and cache

counterparty shared secret info in memory, all DNS record lookup details get lost between

server restarts. Sharing this information across instances and restarts might be possible using

a gossip protocol, persistent cache such as Redis, or file-based solution, but we would want to

collect details about how the naive implementation behaves before trying to prematurely

optimize this.

The process flow works as follows:

Central DNS
crawl

ads.cert RPC server w/

DNS crawl

Fully in-process (ephemeral)

Ephemeral RPC server

Regionally/globally consistent RPC
server with persistence

Integrator’s application

Proprietar
y
applicatio

ads.cert
integrator
API

ads.cert
core
signature

Hosting
provider
DNS

Integrator’s application

Proprietar
y
applicatio

ads.cert
integrator
API

Hosting
provider
DNS

Ephemer
al DNS
refresh

ads.cert
core
signature

Ephemer
al DNS
refresh

ads.cert RPC
server

Integrator’s application

Proprietar
y
applicatio

ads.cert
integrator
API

Hosting
provider
DNS

ads.cert
core
signature

Persisten
t DNS
refresh

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 12 of 59

1. Integrating application needs to sign or verify a signature, so it invokes the ads.cert

integrator stub API provided for the integrator’s respective language

2. Stub creates an RPC request containing a SHA256 hash each of the destination URL

and request body and sends over RPC to signatory server (or stays in-process for that

variant)

3. Signatory server looks up whether there is any pre-cached shared secret for the

counterparty domain

a. If found, this component embosses (or verifies) the request and returns the result

b. If NOT found, the service returns a result with the appropriate status and

enqueues a domain discovery request

4. Domain interest coordination logic initiates DNS lookup, periodically refreshed by DNS

refresher logic

5. Shared secret indexer logic calculates shared secrets for keys obtained from DNS

6. Updated shared secrets get applied to the in-memory shared secret cache used for

subsequent requests

Persistent, centralized DNS refresh management option

Post MVP: This added complexity need not be included in the initial MVP implementation, but

we should design the code to support adding these enhancements.

Larger enterprises and integrators requiring a higher degree of reliability may choose to deploy

a more-complex architecture that permits consistent, resilient behavior within a global

deployment or cloud availability zone. This approach isolates the serving components from

infrastructure outages such as local or remote DNS resolver issues by retaining the last-known-

good DNS record info within a persistent datastore and pushing updates out to the serving

environment in an atomic or eventually consistent manner.

ads.cert all-in-one server

Integrator
ad server
backend

Integrating ad
serving

ads.cert integrator
stub (Go, C++,

ads.cert
signatory

DNS
refresher

Shared
secret

Domain
interest

1
2

3
6

4

Host DNS
recursive

5

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 13 of 59

1. The ads.cert signatory RPC server reads a file containing last-known-good shared

secret calculations for each domain

2. Integrating application needs sign or verify a signature, so it invokes the ads.cert

integrator stub API provided for the integrator’s respective language

3. Stub creates an RPC request containing a SHA256 hash each of the destination URL

and request body and sends over RPC to signatory server

4. Signatory server looks up whether there is any pre-cached shared secret for the

counterparty domain

a. If found, this component embosses (or verifies) the request and returns the result

in the RPC response

b. If NOT found, the service returns an RPC response with the appropriate status

and then forwards the domain discovery request via PubSub queue (noting this

in local memory)

5. Domain interest coordinator reads from queue and writes domain interest to DB

6. Event monitoring and periodic polling trigger DNS refresh process which requests latest

DNS records from DNS recursive resolver

7. DNS fetch results written to discovery DB

8. Shared secret distributor identifies last-known-good DNS response for each domain,

calculates shared secrets using private key, and maintains in-memory index to identify

changes

9. Shared secret distributor writes updates over PubSub and periodically updates shared

secret snapshot files

10. ads.cert signatory server consumes PubSub updates and indexes in memory

Integrator
ad server backend

Domain discovery DB schema

Integrating
ad serving

ads.cert
integrator

ads.ce
rt

Domai
n

discov

DNS
refresh

Shared
secret

Table:
DomainInterest

domain_
name

last_inte
rest_timest

Table:
DNSResponse

domain
_name

respon
se_timest

Shared
secret

Doma
in

Host
DNS

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 14 of 59

The exact arrangement of this architecture may require prototyping and experimentation.

This diagram may serve as a better representation of the process flow, illustrating a division of

the system into four major components with differing risk postures:

The “DNS interest cache” depicted here may, in practice, be better implemented as a logs

processing pipeline depending on the integrator’s preferences. If integrators prefer this option,

they should log the domain(s) specified in the API response.

Public key distribution

The ads.cert protocols rely on DNS for distributing public key details and pointers from a domain

receiving ad queries to the company’s ads.cert Call Sign domain representing their business

identity.

DNS record format

An ads.cert key record looks like the following:

$ host -t TXT _delivery._adscert.ssai-serving.tk

descriptive text "v=adcrtd k=x25519 h=sha256 p=w8f3160kEklY-nKuxogvn5PsZQLfkWWE0gUq_4JfFm8"

$ host -t TXT _delivery._adscert.exchange-holding-company.ga

descriptive text "v=adcrtd k=x25519 h=sha256 p=bBvfZUTPDGIFiOq-WivBoOEYWM5mA1kaEfpDaoYtfHg"

It consists of an “_delivery._adscert” subdomain of the ads.cert Call Sign domain: the

company’s identity within the ads.cert scheme. The example above shows the records for two

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 15 of 59

fictitious counterparty companies. Each record contains a boilerplate v/k/h parameter indicating

the version, key algorithm, and hash algorithm, followed by one to four public keys listed in

order of preference (permitting key rotation), fitting within the 255 byte value size limit for a DNS

TXT record.

In addition, ads.cert permits delegation of signing authority using an “ad policy” record (modeled

after the sender policy framework, SFP, used for email) that looks like the following:

$ host -t TXT _adscert.ad-exchange.tk

descriptive text "v=adpf a=exchange-holding-company.ga"

If “ssai-serving.tk” needs to invoke the URL https://ads.ad-

exchange.tk/impression?auction=6d8a826b02a2715e44 to record an ad impression, then they

would first look up the DNS record for _adscert.ad-exchange.tk to find that exchange-

holding-company.ga is the signing authority (the ads.cert Call Sign domain) for this entity.

Generating a key

With curve25519, any 32 byte random value can be used as a private key. To be secure, it’s

only necessary that these values be obtained from a cryptographically secure random number

generator and the value remains protected from improper disclosure. As an initial iteration

during this project’s low-security MVP stance, we’ll provide a simple command line tool for

generating a random 32 byte key, calculating the corresponding public key using the X25519

library, and emitting these values in base64 encoding to the console.

$ go run cmd/keygen/main.go

Randomly generated key pair

Public key: pi1lCNA0MThJ4tWnCp0BgUKDdyoT1aSXcHzwZYteGTc

Private key: ZzpzEGOe2xCTI6U7zf3mFvdExnHhKsJ2nh5vE20e99o

Post MVP: As our process becomes more secure, we will discourage this key management

method, instead transitioning to a solution where cloud hosting IAM and production deployment

processes limit access to private key material so that it’s only accessible to production jobs

running within limited roles. In this arrangement, we can utilize utilities that run as these

privileged roles that can create, store, and access secrets within the cloud hosting

environment’s secrets manager solution. Ideally, no human user will have access to the private

key material using this model: the interface to this component would only provide the public key

that the administrator should publish in DNS.

Securely storing keys

Post MVP: The ads.cert tooling uses a “configuration as code” approach to key management,

where the keyring used by the application is meant to be checked into one’s source control

system in the same way that other system configuration files are managed in a “configuration as

code” DevOps workflow. The application uses external key management system (KMS)

https://ads.ad-exchange.tk/impression?auction=6d8a826b02a2715e44
https://ads.ad-exchange.tk/impression?auction=6d8a826b02a2715e44

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 16 of 59

infrastructure to securely decrypt the private keys on application startup. For example, the

applications needing access to keys can use the KMS to decrypt the private key material by

specifying the KMS URI for the “key encryption key” (KEK) (e.g. gcp-

kms://projects/example1/locations/global/keyRings/adscert-kek/cryptoKeys/kek) and then

using the cloud access management controls to limit which roles can request decryption

operations that use this key.

Keys are managed by a tool and stored in a JSON configuration file that looks like the following

mockup (dates shown for illustrative purposes and do not imply expected key rotation

schedules):

{

 "domain": "exchange-holding-company.ga",

 "keyset": [

 {

 "key_id": "mPwKMd",

 "public_key": "mPwKMdHt-UZvzYdL5oAYzwxhS5SZHpcj2jhFy_c9zQk",

 "encrypted_private_key": "fpe4_04gwqohjjjOpidicRG.....iIv8M",

 "status": "KEY_STATUS_ARCHIVED",

 "timestamp_created": "2021-03-04",

 "timestamp_activated": "2021-03-07",

 "timestamp_primaried": "2021-03-10",

 "timestamp_secondaried": "2021-03-28",

 "timestamp_archived": "2021-05-04"

 },

 {

 "key_id": "mBVKMG",

 "public_key": "mBVKMGsixPFQRmLu7cjqYqvTmATPfpU_rymUYNTAOlU",

 "encrypted_private_key": "NPF_gZ4ettyH1AcN0TA0yRC.....F5NSE",

 "status": "KEY_STATUS_ACTIVE_SECONDARY",

 "timestamp_created": "2021-03-18",

 "timestamp_activated": "2021-03-27",

 "timestamp_primaried": "2021-03-29",

 "timestamp_secondaried": "2021-04-12"

 },

 {

 "key_id": "z44FDk",

 "public_key": "z44FDkoTru2wab9-WQu0oL3A4IdC-zlQkmd3CA9OQRo",

 "encrypted_private_key": "I6ZNrf7xdvVcPq7Xfb6nCkY.....kSktY",

 "status": "KEY_STATUS_ACTIVE_SECONDARY",

 "timestamp_created": "2021-04-07",

 "timestamp_activated": "2021-04-09",

 "timestamp_primaried": "2021-04-12",

 "timestamp_secondaried": "2021-05-08"

 },

 {

 "key_id": "It3XaO",

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 17 of 59

 "public_key": "It3XaOlX99qwHqUGQ_cHuoArmmXUU8oichIBHSJj7BQ",

 "encrypted_private_key": "KKC6SQhCBeI-tmEB5toG1Wc.....Zj_qU",

 "status": "KEY_STATUS_ACTIVE_PRIMARY",

 "timestamp_created": "2021-05-01",

 "timestamp_activated": "2021-05-08",

 "timestamp_primaried": "2021-05-10"

 },

 {

 "key_id": "w2FrwA",

 "public_key": "w2FrwATf0QDwOKk5eUyeCn1YiF4F2dmggvZAjVK0xzQ",

 "encrypted_private_key": "L_OoU7nTp-nAHKvcHf3b3_g.....BHYOc",

 "status": "KEY_STATUS_PUBLISHED",

 "timestamp_created": "2021-05-07",

 "timestamp_activated": "2021-05-11"

 },

 {

 "key_id": "S5nPtY",

 "public_key": "S5nPtYZdI_4inpaBAA7YHDASWFntCq0AfPhYGSDb6Tk",

 "encrypted_private_key": "L745k5BkclNaUuUPx5hSL34.....ly6zQ",

 "status": "KEY_STATUS_UNPUBLISHED",

 "timestamp_created": "2021-05-15"

 }

]

}

Newer keys are added at the bottom. Older keys get removed from the top.

The ads.cert tooling can read this configuration file and deterministically transform it to

corresponding DNS records. While initially the tooling will simply emit the record that a system

administrator should copy and paste into their DNS config, later revisions could automate the

process of updating DNS based on the state of this file. Thus, the tooling would generate a

record with the following 211 byte value (newest keys appearing first):

v=adcrtd k=x25519 h=sha256 p=w2FrwATf0QDwOKk5eUyeCn1YiF4F2dmggvZAjVK0xzQ

p=It3XaOlX99qwHqUGQ_cHuoArmmXUU8oichIBHSJj7BQ p=z44FDkoTru2wab9-WQu0oL3A4IdC-

zlQkmd3CA9OQRo p=mBVKMGsixPFQRmLu7cjqYqvTmATPfpU_rymUYNTAOlU

Because of application release processes, DNS caching, application caching, and other delays,

key rotation must be performed with caution. A party publishing a new key should refrain from

using that new key until it is safely picked up by counterparties. Because of this measured

rollout requirement, the ads.cert keyring tracks each key through its lifecycle, and the revision

history for its changes can be tracked through the implementer’s source control system.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 18 of 59

The lifecycle of a key is as follows (with corresponding key status):

● Private key newly minted (KEY_STATUS_NEW) - Private key written to party’s keystore but

not yet installed within serving systems

● Private key installed (remains KEY_STATUS_NEW) - All serving systems globally have

access to the new private key for signing and verification operations

● Public key published (KEY_STATUS_PUBLISHED) - New corresponding public key written

into the party’s DNS record, advising counterparties of its availability for their use

● Public key distributed (KEY_STATUS_ACTIVE_PRIMARY) - After ample time has passed for

allowing counterparties to pick up and index the new public key, the party may begin

ramping up use of the new key for signing operations

● Public key dormant (KEY_STATUS_ACTIVE_SECONDARY) - The public key remains

published in DNS but appears further down the list of published values

● Public key archived (KEY_STATUS_ARCHIVED) - The public key is removed from DNS,

although the corresponding private key remains installed within serving systems for

continued use in stray signature verification still using the old key

● Private key uninstalled - The private key is fully removed from serving processes so that

it can no longer used to verify signatures online, and the key is removed from the keyring

configuration file

● Private key destroyed (out of system scope) - Key encryption key destroyed within the

implementer’s key management system, removing party’s ability to recover and

retroactively evaluate signatures using that key

Consult with your company’s privacy and legal counsel to establish an appropriate key retention

policy.

The command line tooling lets an administrator perform key management operations. To

protect keys from unauthorized access, the tooling does not give administrators direct access to

keys. A key generator tool, deployed into a container environment operating as a privileged

role, will generate a new random key, encrypt that key using its privileged access to the KMS,

and then return the encrypted private key with corresponding public key so that the pair can be

imported into the keyring. The following is a mockup for how this tool should work:

$ KMS=gcp-kms://projects/example1/locations/global/keyRings/adscert-kek/cryptoKeys/kek

$ ~/adscert/bin/adscert-keygen --kms_uri=$KMS

Generated key with the ID: S5nPtY

Use the adscert-keyring-tool command to add this secured key to the desired

keyring.

c62MGxeGDIkuCNhbCAQjDOxEoKAjkh8M9t2hsi9cOEkG2CDC-

t5OggQIgFIj9YqKs_pHsnh4hoy0hMMX7I3OkgnD1eHQMyBD556yn5VtQgA9uv63ZxZTlN0k9qNdiyFxEs9zCic

EFCZ9k5WDdplfHkAy4eoxNaDqcV9-zNuhssFw

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 19 of 59

The base64 encoded JSON value1 contains a plaintext representation of the public key and the

corresponding encrypted private key, intended for consumption by the subsequent tooling.

With this value protecting the private key from human prying, the keyring management tool

permits importing it into a local keyring copy.

This command creates a new adscert-key-config.json file if one does not already exist at the

specified location:

$ ~/adscert/bin/adscert-keyring-tool --action=create-keyring \

> --config=adscert-key-config.json --domain=exchange-holding-company.ga

Keyring created for domain exchange-holding-company.ga

Use the import-key action to import the first wrapped key.

This command reads the adscert-key-config.json file, modifies the data to include the newly

imported key payload, and overwrites the file.

$ ~/adscert/bin/adscert-keyring-tool --action=import-key \

> --config=adscert-key-config.json --key_wrapper="c62MGxeGD...zNuhssFw"

Imported key ID S5nPtY into keyring.

This command summarizes the keys contained in your keyring, validates the configuration, and

outputs the required DNS record that will reflect this configuration in production. It also checks

to see if the value found in DNS matches the value required for this configuration. If it does not

match, the tool provides additional information about the changes to make.

$ ~/adscert/bin/adscert-keyring-tool --action=list-keys \

> --config=adscert-key-config.json

Keys for domain: exchange-holding-company.ga

These are the keys found in your keyring config:

Key ID ? Status Last action

mPwKMd ARCHIVED 2021-05-04

mBVKMG * SECONDARY 2021-04-12

z44FDk * SECONDARY 2021-05-08

It3XaO * PRIMARY 2021-05-10

w2FrwA * PUBLISHED 2021-05-11

S5nPtY PENDING 2021-05-15

An asterisk (*) indicates which public keys will be added to the generated DNS

record for this configuration, shown below.

DNS diagnostics report

1 The current mockup is not actually base64 encoded JSON and is instead just random gibberish, so

don’t try to decode it. :-)

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 20 of 59

DNS update status:

>>> NO MATCH - AWAITING DNS UPDATE <<<

A DNS record was found for the required entry, but the value does not reflect

your current key configuration.

Required DNS record

Based on this current key configuration, your DNS should contain the following.

DNS TXT record key:

_delivery._adscert_.exchange-holding-company.ga.

DNS TXT record value:

v=adcrtd k=x25519 h=sha256 p=w2FrwATf0QDwOKk5eUyeCn1YiF4F2dmggvZAjVK0xzQ

p=It3XaOlX99qwHqUGQ_cHuoArmmXUU8oichIBHSJj7BQ p=z44FDkoTru2wab9-WQu0oL3A4IdC-

zlQkmd3CA9OQRo p=mBVKMGsixPFQRmLu7cjqYqvTmATPfpU_rymUYNTAOlU

Please update your DNS to contain the specified key and value shown above,

ensuring that the value appears as one continuous line of text.

After applying this change, you may re-run this tool using the same command to

verify that your changes were applied successfully. Allow sufficient time for

the current DNS record version to expire from caching.

Re-running the command to verify DNS updates isn’t required, but it may be useful for

diagnosing issues.

Other key administration operations:

Set a key to PUBLISHED status:

$ ~/adscert/bin/adscert-keyring-tool --action=set-key-published \

> --config=adscert-key-config.json --key_id=S5nPtY

Key ID S5nPtY now has PUBLISHED status.

Set a key to PRIMARY status:

$ ~/adscert/bin/adscert-keyring-tool --action=set-key-primary \

> --config=adscert-key-config.json --key_id=w2FrwA

Key ID It3XaO transitioned to SECONDARY status.

Key ID w2FrwA now has PRIMARY status.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 21 of 59

Set a key to ARCHIVED status:

$ ~/adscert/bin/adscert-keyring-tool --action=set-key-archived \

> --config=adscert-key-config.json --key_id=mBVKMG

Key ID mBVKMG now has ARCHIVED status.

Remove a key from the keyring:

$ ~/adscert/bin/adscert-keyring-tool --action=remove-key \

> --config=adscert-key-config.json --key_id=mPwKMd

Key ID mPwKMd has been removed from the keyring.

Integrator API

We will provide a lightweight GRPC API client in each common language used within ad serving

environments (e.g. Go, C++, Java). The API design will minimize complexity for implementers.

Initially, the API will expose two methods:

● Sign Authenticated Connection

● Verify Authenticated Connection

Future iterations of the ads.cert protocols may extend the list of APIs exposed, so we must

preserve the ability to add new methods and parameters without causing compile errors or

introducing regressions in existing implementations.

APIs will accept/return a request and response data structure rather than raw parameters to

permit adding defaulted parameters if needed in the future. This permits upgrades without

breaking builds.

For example, the following API accepts two values and returns one, but we can change it to

accept/return more values without disrupting existing implementations.

type AuthenticatedConnectionsSignatory interface {

 SignAuthenticatedConnection(

 params AuthenticatedConnectionSignatureRequest)

 (AuthenticatedConnectionSignatureResponse, error)

 ...

}

type AuthenticatedConnectionSignatureRequest struct {

 DestinationURL string

 RequestBody []byte

}

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 22 of 59

type AuthenticatedConnectionSignatureResponse struct {

 SignatureMessages []string

}

API initialization and configuration

Integrators must make a call at application startup which initializes the integrator API based on

the desired configuration. This can be:

● Local configuration, where the API must know the configured ads.cert Call Sign to

declare upon signing/look for upon verification along with the required private key ring

● Remote configuration, where the API needs a connection string to dial the appropriate

backend (via TCP, Unix sockets, etc.) which will be separately initialized using the

settings above

Some organizations prefer using command line flags to pass in runtime parameters, while

others prefer configuration files in YAML, etc. Rather than dictate a specific configuration

technique, the ads.cert implementation will provide initialization parameters through a generic

data structure, and different pluggable strategies may be used to build it via flags, files,

databases, etc.

import (

"flag"

"github.com/InteractiveAdvertisingBureau/adscert/api/golang/adscert"

)

func main() {

 flag.Parse()

 ...

 config := adscert.ConfigureIntegratorFromFlags()

 signer := adscert.NewAuthenticatedConnectionsSigner(config)

 ...

}

This technique also lets integrators configure the signer in a predictable way for use within

testing environments, as the keys, wall clock, and pseudorandom number generator can be

seeded with predictable values while still allowing for broader end-to-end code execution.

API utilization

Refer to the Implementer’s Guide and examples for details about the intended API usage

patterns.

Signing requires providing the destination URL and request body, generating signatures:

signature, _ := signatory.SignAuthenticatedConnection(

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 23 of 59

 adscert.AuthenticatedConnectionSignatureRequest{

 DestinationURL: destinationURL,

 RequestBody: []byte{}})

req.Header["X-Ads-Cert-Auth"] = signature.SignatureMessages

The verifier receiving the request reconstructs the URL that was invoked by the signer. It

passes that URL, the request body, and the signature header to the ads.cert verification API to

check for a valid signature. The verifier may then act on that verification outcome accordingly,

although the safest initial policy may be to just log the outcome.

signatureHeaders := req.Header["X-Ads-Cert-Auth"]

reconstructedURL := …

body, _ := ioutil.ReadAll(req.Body)

verification, _ := signer.VerifyAuthenticatedConnection(

 adscert.AuthenticatedConnectionSignatureParams{

 DestinationURL: reconstructedURL,

 RequestBody: body,

SignatureMessageToVerify: signatureHeaders})

This concludes the API surface area that integrators will utilize. Subsequent sections

summarize implementation details about the underlying open source software.

Calling backend signatory RPC server

Regardless of the operating mode, the integrator shim will access an RPC service interface to

request signing and verification operations. This uniform pattern will permit plugging in different

implementations into the client shim to support the local-vs-remote topology.

To perform a signing operation, the client shim generates a random nonce, timestamp, and

hash of the URL and body (described in depth later).

Signatory RPC service IDL

The signatory service exposes two RPC methods which return operation status and any

applicable signatures/verification outcomes.

service AdsCertSignatory {

 rpc EmbossSigningPackage(AuthenticatedConnectionSigningRequest)

 returns (AuthenticatedConnectionSigningResponse) {}

 rpc VerifySigningPackage(AuthenticatedConnectionVerifyRequest)

 returns (AuthenticatedConnectionVerifyResponse) {}

}

message AuthenticatedConnectionSigningRequest {

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 24 of 59

 SigningContextInfo signing_context_info = 1;

 string timestamp = 2;

 string nonce = 3;

}

message AuthenticatedConnectionSigningResponse {

 repeated SignatureInfo signature_info = 1;

 // TODO: include structured outcome and monitoring feedback.

}

message AuthenticatedConnectionVerifyRequest {

 SigningContextInfo signing_context_info = 1;

 repeated string signature_message = 2;

}

message AuthenticatedConnectionVerifyResponse {

 repeated VerifyInfo verify_info = 1;

 // TODO: include structured outcome and monitoring feedback.

}

message SigningContextInfo {

 string invocation_hostname = 1;

 bytes url_hash = 2;

 bytes body_hash = 3;

}

message SignatureInfo {

 SigningStatus signing_status = 1;

 string signature_message = 2;

}

message VerifyInfo {

 VerifyStatus verify_status = 1;

 VerificationOutcome url_verification_outcome = 2;

 VerificationOutcome body_verification_outcome = 3;

}

enum SigningStatus {

 SIGNING_STATUS_UNDEFINED = 0;

 SIGNING_STATUS_OK = 1;

 SIGNING_STATUS_SIGNATORY_DEACTIVATED = 2;

 SIGNING_STATUS_SIGNATORY_INTERNAL_ERROR = 3;

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 25 of 59

 SIGNING_STATUS_MISSING_REQUIRED_PARAMETER = 4;

 SIGNING_STATUS_COUNTERPARTY_NOT_YET_FETCHED = 10;

 SIGNING_STATUS_COUNTERPARTY_NOT_PARTICIPATING = 11;

 SIGNING_STATUS_COUNTERPARTY_DEACTIVATED = 12;

 SIGNING_STATUS_COUNTERPARTY_INVALID_DOMAIN = 13;

 SIGNING_STATUS_INVOCATION_HOST_NOT_YET_FETCHED = 20;

 SIGNING_STATUS_INVOCATION_HOST_NOT_PARTICIPATING = 21;

 SIGNING_STATUS_INVOCATION_HOST_DEACTIVATED = 22;

 SIGNING_STATUS_INVOCATION_HOST_INVALID_DOMAIN = 23;

}

enum VerifyStatus {

 VERIFY_STATUS_UNDEFINED = 0;

 VERIFY_STATUS_OK = 1;

 VERIFY_STATUS_SIGNATORY_DEACTIVATED = 2;

 VERIFY_STATUS_SIGNATORY_INTERNAL_ERROR = 3;

 VERIFY_STATUS_MISSING_REQUIRED_PARAMETER = 4;

 VERIFY_STATUS_COUNTERPARTY_NOT_YET_FETCHED = 10;

 VERIFY_STATUS_COUNTERPARTY_NOT_PARTICIPATING = 11;

 VERIFY_STATUS_COUNTERPARTY_DEACTIVATED = 12;

 VERIFY_STATUS_COUNTERPARTY_INVALID_DOMAIN = 13;

 VERIFY_STATUS_COUNTERPARTY_INCORRECT = 14;

}

enum VerificationOutcome {

 VERIFICATION_OUTCOME_UNDEFINED = 0;

 VERIFICATION_OUTCOME_VERIFIED = 1;

 VERIFICATION_OUTCOME_UNCHECKED = 2;

 VERIFICATION_OUTCOME_SIGNATURE_MISMATCH = 3;

 VERIFICATION_OUTCOME_SIGNATURE_MISSING = 4;

}

DNS interest loop

The system must retrieve records from DNS on discovering new interest in a particular domain

and on a periodic basis. While DNS records themselves can have a relatively short TTL

specified by the authoritative name server, we can set the expectation for the ads.cert standards

that implementers should tolerate DNS records being cached for much longer (hours, days) and

updates not necessarily available immediately within counterparty ad serving fleets.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 26 of 59

Domain discovery goes through the following lifecycle:

1. Signatory logic tries to look up a counterparty domain from the internal counterparty

thread-safe map.

a. If found, the code uses the available info for performing a signing/verification

operation.

b. If not found, the code inserts a stub counterparty entry into the map using a

thread-safe operation. It signals the availability of a new domain, consumed by a

separate goroutine

2. A DNS refresh loop (awakened by the above signal and by scheduled ticker) begins an

update sweep through the list of entries in the counterparty map.

a. It compares the last DNS fetch time and status for the entry, skipping domains

that have been recently fetched or do not need error retries yet.

b. It performs the DNS fetch when required

c. It updates the struct with the new counterparty details, applying this into the main

counterparty map using an atomic copy-and-swap operation

3. The new DNS information becomes available for future requests using that domain as a

counterparty.

In the initial MVP, this DNS interest loop will operate independently on every ephemeral ads.cert

deployment instance (in-process or RPC server). Each process will learn from its individual

domains exposure which domains need to be looked up and monitored.

To avert a “thundering stampede” of replicas all trying to perform (potentially identical) DNS

lookups at the same time (e.g. in a mass server restart scenario), the configuration parameters

will provide an option for jittering the timing per instance when DNS lookups occur. This may

improve utilization of DNS caching.

Post MVP: To improve consistency across an ad serving fleet, future iterations should

centralize DNS crawl so that a consistent picture of DNS information can be pushed out to

servers uniformly.

Persistence

To support analysis and diagnostics, the DNS interest loop library will initially support basic file-

based persistence and reconstitution so that administrators can snapshot and understand the

system’s behavior. This could also be used as a lightweight way to bootstrap a system on

startup so that it doesn’t have to rediscover domains and records on its own.

One area to investigate is whether or not leveraging Prebid Cache as a local temporary

persistence solution might make sense, as that software currently enjoys broad deployment in

environments already using Prebid Server. We would need to make sure that this use of Prebid

Cache infrastructure does not add risk or degrade performance for its main workload.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 27 of 59

Deriving shared secrets

The ads.cert protocols will use the RFC 7748 X25519 Diffie-Hellman key exchange algorithm to

derive a shared secret between the local private key and the counterparty public key.

It’s a recommended best practice to process shared secrets through a key derivation function

(KDF) rather than use the raw output of the Diffie-Hellman key exchange. We will use the RFC

5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF) to generate scoped

shared secrets for specific operations. This way, we can have one shared secret dedicated to

signatures we generate and another for signatures designating us as a recipient. The

application-specific “info” value supplied to the HKDF operation will be a SHA256 hash of the

string with the format:

adscert connection from=<<origin>> to=<<destination>>

The “from” and “to” fields indicate the signing domain and recipient domain, respectively. For

example, if a party “me.com” signs a message to be sent to “them.com”, they would use:

adscert connection from=me.com to=them.com

Likewise, a counterparty sending a signature to “me.com” for verification would use:

adscert connection from=them.com to=me.com

In the future, we can extend this scheme to support other ads.cert subprotocols with a different

prefix (e.g. “adscert delivery” for the Authenticated Delivery protocol).

This code sample (https://play.golang.org/p/9PTeRl0Za75) provides an end-to-end example of

key generation, key exchange, and KDF application.

Signed message construct

A message consists of the following information:

● Domain of the party originating the request

● Originating key alias (first six characters of the base64 encoded public key used to sign)

● Domain component of the URL being invoked on the remote web server

● Domain of the counterparty to this request

● Counterparty key alias

● Second-resolution timestamp

● Random nonce

● Status code (useful for encoding errors)

These values are encoded into a querystring format of key/value pairs.

https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/rfc/rfc5869.html
https://www.rfc-editor.org/rfc/rfc5869.html
https://play.golang.org/p/9PTeRl0Za75

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 28 of 59

Additionally, the signed payload implicitly contains a SHA256 hash each of the post body (if

applicable) and the URL being invoked.

A cryptographically secure signature is then computed over these details. Two HMACs are

constructed over the data, converted to base64, and truncated to arrive at a respective

signature value.

A complete signature message looks like the following:

from=request-origin.com&from_key=ABCDEF&invoking=destination-service.com&non

ce=aV0V80ofk_Nv&status=OK×tamp=210429T142944&to=destination-

business.com&to_key=UVWXYZ; sigb=s3rT3pkYou0I&sigu=esa6jS65xSPj

(Exact layout/field naming not yet finalized.)

The first signature (sigb) consists of an HMAC over the message concatenated with the body

SHA256 hash:

𝑏𝑜𝑑𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐵𝑦𝑡𝑒𝑠 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 || 𝑏𝑜𝑑𝑦𝐻𝑎𝑠ℎ)

Note: creating an HMAC which directly included the body content would have been

preferable.

𝑏𝑜𝑑𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐵𝑦𝑡𝑒𝑠 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 || 𝒃𝒐𝒅𝒚)

This avoids hashing a hash (generally not desirable).

The alternative scheme, however, avoids needing to send the entire request payload and

URL content to the remote signing server over RPC. Only the 32 byte hash values need to be

sent using this scheme. It also helps obfuscate the content of the body and URL being signed

from the remote signing server, but it does not fully protect against the server obtaining

knowledge about the messages that were signed (e.g. if the signatures are over non-unique

messages). This should be an acceptable compromise. The hash itself isn’t encoded in the

message provided in the HTTP request header, so it is not possible to learn what URL/body

was signed from the signed message alone.

The URL signature (sigu) also concatenates the URL SHA256 hash into the message.

𝑢𝑟𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐵𝑦𝑡𝑒𝑠 = 𝐻𝑀𝐴𝐶𝑆𝐻𝐴256(𝑠ℎ𝑎𝑟𝑒𝑑𝑆𝑒𝑐𝑟𝑒𝑡, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 || 𝑏𝑜𝑑𝑦𝐻𝑎𝑠ℎ || 𝑢𝑟𝑙𝐻𝑎𝑠ℎ)

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 29 of 59

Appending to the prior HMAC construct lets the algorithm reuse the prior hash calculation:

 h := hmac.New(sha256.New, counterparty.SharedSecret().Secret()[:])

 h.Write([]byte(message))

 h.Write(bodyHash)

 bodyHMAC := h.Sum(nil)

 h.Write(urlHash)

 urlHMAC := h.Sum(nil)

This reuse reduces CPU resource requirements and latency.

Message variations for abnormal operations

Various abnormal operating modes may require reporting a different signature than a standard

message. For example, the client may have signing deactivated. Persistent DNS errors may

lead to the client using an older counterparty public key. The counterparty DNS record could be

malformed. For foreseeable scenarios, the protocol includes a set of status codes reportable

with the signature message.

enum AuthenticatedConnectionProtocolStatus {

 AUTH_CONNECTION_PROTOCOL_STATUS_UNDEFINED = 0;

 AUTH_CONNECTION_PROTOCOL_STATUS_OK = 1;

 AUTH_CONNECTION_PROTOCOL_STATUS_DEACTIVATED = 2;

 AUTH_CONNECTION_PROTOCOL_STATUS_UNAVAILABLE = 3;

 AUTH_CONNECTION_PROTOCOL_STATUS_TESTING = 4;

 AUTH_CONNECTION_PROTOCOL_STATUS_KEY_FETCH_PENDING = 5;

 AUTH_CONNECTION_PROTOCOL_STATUS_REVIEW_PENDING = 6;

 AUTH_CONNECTION_PROTOCOL_STATUS_DNS_RETURNED_RCODE = 7;

 AUTH_CONNECTION_PROTOCOL_STATUS_ADPF_PARSE_ERROR = 8;

 AUTH_CONNECTION_PROTOCOL_STATUS_ADCRTD_PARSE_ERROR = 9;

 AUTH_CONNECTION_PROTOCOL_STATUS_ADVISORY_ONLY = 10;

 AUTH_CONNECTION_PROTOCOL_STATUS_SUPPRESSED = 11;

 AUTH_CONNECTION_PROTOCOL_STATUS_DELAYED = 12;

}

In particular, there will be scenarios where the client has not yet fetched the counterparty’s

public key from DNS, so no signature can be generated. So that the client uniformly identifies

itself to servers, the ads.cert signatory will always generate a message to transmit, but this

message may not always be signed if no key material is present.

For example, when invoking a server not yet seen by the client (or across restarts of an

ephemeral client instance), the client may report a signature message with a numeric status

such as the following:

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 30 of 59

from=request-origin.com&invoking=destination-service.com&status=5

This declares (in a non-secure fashion) that ssai-serving.tk has initiated the key fetch process

against ad-exchange.tk, but the process has not completed in time to handle this request.

Similarly, there may be scenarios where the client isn’t able to get current DNS record details for

the counterparty, so the client is currently relying on potentially stale DNS replies for the

counterparty key info. The message can be signed as usual, but the client uses this status field

to inform the server that there’s a reason the key may be out of date. The field can also be

used to give the server hints that there may be a persistent issue with the server’s own DNS

deployment.

The system will provide options for controlling what types of status values get reported to

servers to reduce unwanted oversharing of information, if warranted.

Server deployment

Runtime configuration

This system requires the following configuration parameters to be specified by the implementer:

● ads.cert Call Sign domain name: what domain name does the integrator use to

represent its organization to other ad tech participants?

● Keyring containing private key material: which private keys does the system intend to

actively use for signing requests and verifying signatures?

Additionally, there are administrative settings that will allow for overriding behavior for exception

cases:

● Domain blocklist/allowlist: which counterparty domains does the system explicitly ignore

for signing-related operations? During experimental ramp-up, which domains does the

system permit for selective signing/verification operations?

● DNS record augmentation: manual overrides for public key info obtained from a domain

to augment/replace values obtained through normal DNS lookups, used for overriding

incorrect behavior

● Counterparty key selection override: manual override to permit use of another

(potentially stale) key for signing/verification with a specific counterparty

Identity and Access Management (IAM) integration

To improve security, certain secure operations should only be available to applications running

as a specified role and fully inaccessible to individual administrators. Features such as cloud

secret management can be isolated in this way. Configuration settings will need to be provided

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 31 of 59

to inform the application where to look up these secure configuration data. For example, this

may be in the form of a cloud key management system resource path.

Application container

The ads.cert signatory RPC server should be wrapped with appropriate containerization options

for deployment within a containerized environment (e.g. Kubernetes, Docker). The ephemeral

deployments permit individual servers to be brought online and turned down as needed in

response to demand change, although these will lack counterparty key information until they

see an ad request using that counterparty for the first time after a restart. A persistent last-

known-good DNS dataset can be read into the server upon startup, allowing the containerized

environment to bring up additional instances without behavior degradation.

Batch operation

To simplify implementation, some deployments may choose to perform signature verification as

a centralized batch processing operation over logged signature messages as opposed to

attempting online signature verification. Participants may find that this technique provides better

reliability and consistency, as DNS resolution gaps can be filled in advance of performing the

logs processing step. This method requires logging three pieces of data:

● The received signature message

● Hash of body

● Hash of URL

This provides sufficient information to reconstruct and verify the signatures. Implementers may

choose to log all signatures, a uniform sampling, or samplings weighted to problematic

segments.

TODO: Evaluate if logging hashes will necessitate salting them with the request nonce and

timestamp.

Project information

Code location

All code will be hosted in a repository at https://github.com/IABTechLab/adscert including the

server implementation and open source APIs for each target language.

https://github.com/IABTechLab/adscert

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 32 of 59

Repository layout

Given the multiple language nature of this project, this is lightly influenced by the unofficial

suggestions in https://github.com/golang-standards/project-layout (which is subject to much

debate, but various recommendations seem suitable).

● github.com/IABTechLab/adscert

○ api

■ cpp

■ golang

■ java

■ …

○ internal (golang)

■ discovery

■ signatory

■ formats

○ proto

■ discovery

■ signatory

○ cmd (golang)

■ keygen

■ signatory-server

○ docs

○ examples

■ cpp

■ golang

■ java

■ …

○ conformance

■ authconnections

Notable features of the layout:

● Integrators utilize a thin API implementation for their respective application language.

● All implementation within the /internal directory will be restricted from import into

packages outside of this project.

● The “discovery” package focuses on fetching DNS records and handling the replies. It

needs to support options for storing DNS crawls to a storage system (initially just files).

● The “signatory” package focuses on performing efficient signatures based on an in-

memory shared secrets cache.

● The “conformance” package provides a series of format and DNS tests that help ensure

consistent handling of the protocol for any parties choosing to build a custom

implementation of these libraries (albeit discouraged).

https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout/issues/117
https://github.com/golang-standards/project-layout/issues/117

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 33 of 59

Code review and change management procedures

Upon launch readiness preparations, we will institute mandatory code reviews for all changes.

Before that, code reviews will be encouraged but not strictly required.

Open source software dependencies

Because of the sensitive security of any servers or libraries built from this code, we will strive to

minimize the number and origins of direct and transitive dependencies imported by the project.

Whenever possible, this project will rely upon the core set of libraries published by the Go

Maintainers team due to the controlled change management process.

Vulnerability disclosure process

We will establish a process for security researchers to disclose security concerns about the

protocols and open source implementation through a formal IAB Tech Lab process. The

materials will ask that researchers provide a standard 90 day remediation period before

publishing their research.

Measuring improvements

While our libraries may provide basic support for surfacing some of this information to

implementers in a structured fashion, we’ll be relying on implementers to perform their own

analysis based on their proprietary logging and analytics solutions. We encourage

implementers to voluntarily report improvements attained to the IAB Tech Lab ads.cert working

group so that our team may iterate on the designs and understand industry impact.

Measurable objectives for implementers:

● Reduction in opaque traffic (bid requests, impression pings, etc.) received from cloud

and data center IPs

● Ratio of traffic containing fully verifiable signatures, measured by relevant dimensions

(request count, advertising spend, etc.)

● Ratio of traffic where signatures exhibit no technical issues (e.g. URL canonicalization

issues), thereby minimizing data analyst/ad ops workloads

● Efficiencies from buyers being able to leverage signed server-to-server creative fetches

and impression pings as an additional inventory quality signal, including:

○ Advertisers/Agencies

○ Programmatic buyers/DSPs

○ Publishers

○ Sell-side platforms

○ Third-party verification platforms

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 34 of 59

● Ad spend improvements shared by the aforementioned parties

● Operational improvements that save the aforementioned parties’ resources

● Policy changes implemented by demand partners to require server-to-server traffic being

authenticated using this or equivalent protocol

● Platforms providing publisher solutions (e.g. server-side ad insertion products) facilitate

more ad insertions from legitimate origins, therefore receive more slots filled/auction

pressure

● Reduction in publicized incidents of schemes generating invalid traffic at scale

Caveats

All implementers must continue to maintain a defensive posture and watch for invalid activity.

As we harden security, abusive behavior will attempt to find weaknesses in defenses and exploit

them. These protocols cannot and do not intend to replace vigilant monitoring of advertising

activities. We encourage knowledge sharing about novel abuse schemes--especially those

designed to circumvent security controls we add--with the IAB Tech Lab working groups who

maintain these protocols.

Monitoring

Infrastructure

We will instrument this software with the OpenTelemetry framework which enables collection of

telemetry (time-series metrics, logs, and traces) using standardized APIs and integrates into

various monitoring platforms.

TODO: validate that OpenTelemetry is ready for adoption with Go, or if the Prometheus APIs

are preferred.

Note: monitoring systems expose metrics which can either be expressed as counters or gauges.

(Gauges can decrease in value, while counters only increment.) Monitoring systems permit

slicing of metrics by attributes. Because the monitoring infrastructure builds an in-memory map

containing each attribute tuple seen for the metric, there are limits on attribute cardinality, and

some monitoring solutions may implement a hard cap (e.g. 5,000 tuples) that the instrumented

application will collect for a metric before it begins discarding values. The outlined metrics

appearing below may have the option to activate higher cardinality options, but these will need

to be managed with caution, and we will want to have collection of the attribute be configurable

(maybe targeting specific domains).

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 35 of 59

Signatory API operational and performance metrics

● Signing operations

○ sliced by:

■ Signing outcome status

■ Invocation PS+1 domain (optional, with caution)

■ Counterparty ads.cert Call Sign domain (optional, with caution)

○ measuring:

■ Invocations (counter)

■ Latency (histogram counter, no slicing)

● Verification operations

○ sliced by:

■ Verification outcome status

■ Counterparty ads.cert Call Sign domain (optional, with caution)

○ measuring:

■ Invocations (counter)

■ Latency (histogram counter, no slicing)

DNS refresh loop metrics

● Domain interest list

○ measuring:

■ Number of items (gauge)

● DNS fetch attempts

○ measuring:

■ Number of attempts (counter)

■ Latency (histogram counter, no slicing)

Counterparty participation and performance analytics

● Census and query weighted participation by counterparty domain and invocation domain

● Persistent errors/abandonment from participating domains

● DNS record format errors

● DNS latency

● DNSSEC participation

● Change of keying events

Crawl quality

One of the most important aspects of a robust DNS crawl solution is a proper active crawl

quality monitoring solution. From one direction, we are collecting an ongoing stream of

“demand” to crawl DNS for a particular domain. This “demand” can be satisfied by receiving

crawl responses from DNS providing the DNS records located (or lack thereof).

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 36 of 59

Similar to other protocols such as ads.txt, the crawling system needs to account for transient

failures that can occur within some local or remote part of this process. There can be a

transient outage somewhere: in the local DNS recursive resolver, in the remote authoritative

server, in the network between these. The system needs to be resilient to ignore these

transient errors, surfacing them to administrators only if the issue remains persistent. To help

administrators prioritize investigations, this crawl quality monitoring should include an indication

whether the domain has previously demonstrated participation within the ads.cert scheme. The

solution should also include a way to let the integrator mix in impact metrics such as traffic

volumes related to each domain. In particular, mixing in signing or verification outcomes into

this domain-level data will help measure the current impact to the system. These data will help

inform actionable alerting strategies.

Latency

Signing/verification latency objectives

The core effort to lookup counterparty information in a thread-safe fashion, calculate message

hashes, and generate the HMAC signature for the message needs to remain as fast as

reasonably possible, and we currently target a 10 microsecond latency for these operations.

One virtual CPU should be able to sign and verify approximately 100K messages per second.

DNS fetch latency

For initial DNS fetches of a newly discovered domain, fetch latency can be as fast as a normal

DNS lookup, with authoritative nameserver responses available within <200ms (faster if results

cached).

While we don’t deliberately slow down this process, we don’t want to build an overreliance on

speedy lookups to the point that counterparties reject what is otherwise good ad inventory due

to lack of signatures on legitimate requests.

We will generally assume that smaller scale deployments will lean towards the simpler,

ephemeral DNS configuration where each serving process maintains its own DNS fetch state.

These implementations should benefit from fast (<200ms) DNS fetching that will incorporate

those public keys into subsequent ad request signatures/verifications.

Larger deployments (particularly those using centralized DNS fetching solutions) may exhibit

substantially longer lookup times for new domain discoveries, as it would be up to the central

system--rather than distributed workers--to perform the fetch. On the other hand, these

centralized deployments would be persisting the DNS fetch results they receive, so this initial

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 37 of 59

fetch latency penalty would only be encountered on a domain’s first discovery. Subsequent

restarts of worker systems would take advantage of the persistent DNS fetch info.

Verifiers need to be tolerant of the fact that these two deployment models will exist within the

ecosystem. Some percentage of authentication messages may not contain signatures due to

this DNS fetching requirement. We will collect data from implementers to understand the extent

that this is a problem and adapt the infrastructure/guidance accordingly.

Application startup-to-healthy latency

We will target a <1s server startup latency. We will implement testing within our continuous

integration environment to monitor for performance regressions here and either address those

problems or update the SLO if fixing isn’t practical.

Scalability

Microbenchmarks

TODO

Load expectations and testing

TODO

Responsiveness to traffic shifts

TODO

Internationalization

User messaging

The core functions of the system do not generate user-facing interfaces, so internationalization

concerns for messaging generally aren’t applicable.

We don’t currently have plans to localize messaging for administrator tooling related to these

components, although this localization work could be performed if needed and assists the

community.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 38 of 59

Domains

Due to the considerable security risks involved with humans trying to interpret extended

character set domains, our protocols require use of counterparty ads.cert Call Sign domains

within the ASCII character set. Any localized domain participating in this scheme must be

expressed in Punycode format as a canonical representation. This applies to DNS record

content (already limited to ASCII) and signature messages. Limiting domains to ASCII

characters helps keep them accessible to the broadest audience within the advertising

ecosystem while protecting from social engineering that's possible through supporting extended

characters.

Documentation

As is standard practice with IAB Tech Lab documentation to publish in English, we do not

anticipate the need to localize the documentation for this project, but translations could be

created if there is demand for this service.

Logging plan

DNS crawl logging

The DNS crawl component will provide the option to generate structured logs based on the

crawl results, with fields including:

● DNS query subdomain name

● DNS response

● Latency

● Errors

Auditable security events

Beyond the responsibility of the OSS package but still important, the documentation should

suggest implementing a sensible auditable security event policy around sensitive actions, such

as:

● KMS administration operations

● KMS encryption operations

● IAM role grant changes related to the KMS service or roles running privileged jobs

● Launch of jobs running under privileged roles

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 39 of 59

Failure modes

Serving-related failures

Integrator stub failure to connect to RPC signer

We must assume complete or degraded ability to connect to the RPC-based signer process at

application startup or during operation.

● Integrator RPC client stub must fail fast with tight latency profile and export monitorable

metrics regarding these failures

● Stub must log the failure issue with enough detail and appropriate frequency for the

administrator to diagnose the issue

● Where possible, the categorized failure mode should be surfaced as a dimension in the

exported client monitoring metric so that fleet-wide consoles can aggregate the reason

● The RPC client should employ appropriate exponential backoff and persistent reconnect

attempts

● Because signing and verification are a stateless, deterministic operation, there is the

option to send concurrent RPCs to multiple servers if doing so improves reliability and

reduces tail latency

RPC signer overload/latency increase

VMs and containers operate on shared resources that are subject to resource contention. This

may introduce latency.

Memory exhaustion of indexing quota

To reduce risk of runaway memory utilization by the components that index the shared secrets

derived from DNS responses, the OSS index needs to include configurable parameters that limit

the quantity of entries that can be inserted.

The OSS needs to export the configured and current quota utilization for each instance as

monitoring metrics.

Failure to index updates

Most relevant to centralized DNS crawling: the age of indexed data being used within

signing/verification processes must be monitored to ensure that these jobs obtain up-to-date

information. We have not yet designed an open source centralized crawling mechanism, so the

details here are currently vague. This solution will likely track and export metrics at the

production and consumption points regarding the timestamp of indexing data streams.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 40 of 59

HTTP request related failures

Web servers typically allocate a fixed buffer to receive HTTP request headers. This can be

8KB-16KB by default on some web servers, but some defaults are as small as 4KB.

Additionally, increasing the buffer size could push the web server into using an alternative code

path (for example, NGINX sets a distinction for “large” header buffer thresholds, defaulting at

1KB).

When activating the feature for a new domain, clients should monitor the responses returned by

the counterparty web server, rolling back the change for that domain if the update results in a

reduction of successful requests processed.

Based on feedback and demand for such features, we may be able to include options in the

integrator API to facilitate this rollout experiment process and automated restriction per domain.

DNS related failures

This protocol relies heavily on DNS functioning properly (although the same can be said for

normal service operations). This summarizes where failures might occur.

Failures can be caused by:

● Authoritative DNS server outage or misconfiguration

● Recursive resolver unavailability

● DNSSEC misconfiguration by one’s own DNS zone or the parent TLD

The systems will be more exposed to this risk when operating in an ephemeral DNS crawl

mode. Later, as we provide options to use persistent DNS crawl data, transient DNS outages

will have reduced impact.

KMS related failures

We rely on connectivity to the key management system to decrypt private key material. This

action occurs on system startup, and it could be triggered again during operation if a dynamic

configuration change were pushed. Failure to complete this action will result in the instance not

being able to generate signatures.

http://nginx.org/en/docs/http/ngx_http_core_module.html#client_header_buffer_size

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 41 of 59

There are two configuration options to consider for responding to this outage scenario

automatically:

● Instance generates unsigned messages indicating

“SIGNING_STATUS_SIGNATORY_INTERNAL_ERROR” so that the process continues

to process the workload

● Instance reports an “unhealthy” state to the RPC load balancing infrastructure so that the

system attempts to shift load to healthy instances that have functioning keys cached.

The KMS could be unavailable for various reasons:

● Failure to connect to KMS upon app startup (KMS service outage; KMS network

connectivity issue)

● KMS data loss (infrastructure failure; accidental key deletion through KMS admin

console)

As it is by design, humans should not have access to the encrypted private key material nor the

keys used to encrypt it. With that said, there may be desire to add redundancy by maintaining a

backup encryption of the private key material using a separate key stored in an alternative

location (separate cloud provider; on-prem HSM solution; key printed on paper, held in tamper

evident sealed envelope and stored in a locked safe/cabinet). Currently we do not have a

mechanism for this, but one could be built with a sufficient business case.

An option in the case of a prolonged or permanent outage could be to simply rotate in a new key

using a less secure configuration (e.g. private key passed in as command line flag). For

signers, the risk in simply rotating in a key is that counterparties may temporarily be unable to

verify requests until DNS updates propagate.

The best policy could be to keep one key in DNS “in reserve” and available for use in a “break-

glass” scenario. There are four key slots in our DNS protocol, so this is feasible in a key

rotation strategy. In the event of an outage, an out-of-band process could be used to obtain and

deploy this key within serving, bypassing KMS.

Redundancy and reliability

TODO

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 42 of 59

Dependency considerations

DNS recursive resolver unavailability

TODO

Risk considerations and mitigations

Impact to DNS recursive resolvers

Because this solution relies heavily on DNS, and because an ad tech operation’s processes rely

on DNS to function properly for normal ad delivery operations, we must evaluate and ensure

that this system’s design does not pose a risk to the infrastructure or allocated quotas

associated with cloud, on-prem, or external DNS recursive resolver resources. In general, this

should not be a problem, as DNS is built to scale and cache at many layers throughout the

network. Any counterparties that an advertising client already calls out to for normal HTTP

request handling will require DNS lookups to establish those connections.

For proper due diligence, we should assemble details on recursive resolver quotas.

Data integrity

Preventing loss of private key material

The main vector for irrecoverably losing one’s private key material is through accidental or

deliberate KMS key destruction, performed through the KMS administration interface. Limiting

this access may mitigate this risk.

Preventing loss of DNS crawl responses

TODO: revise when we implement persistent DNS crawl

Data retention

DNS crawl responses

DNS responses are based on public data. Retention policies are up to the implementer.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 43 of 59

SLA requirements

DNS unavailability tolerances

TODO

Security considerations

Cryptanalysis

The algorithms we use should be quite robust against cryptographic analysis attacks against the

public keys and the signature scheme.

The 256-bit keys used by the X25519 elliptic curve algorithm produce a 256-bit shared secret

output and provide 128-bit theoretical security.

Application of truncated HMAC SHA-256 provides strong protection of key material, as the

truncation action alone destroys significant structure from any oracle that would confirm correct

selection of the key.

Signature collision risk

Use of a 12 character signature provides a 9 byte (72-bit) range of values, a technique

performed in accordance with NIST recommendations regarding hashing algorithm truncation

[1]. For purposes of protecting low-value ad impressions and identifying fraudulent traffic

sources, this should be sufficient protection, as the impact of this signature guess would be

minimal even if we used a much shorter value. However, if the signature protects something of

particularly high value (e.g. used as an access control mechanism for an administrative function

or larger value funds transfer), then a shorter signature length might not be sufficient for

protecting that use case if the attacker can generate substantial volumes. A 72-bit signature

provides a reasonable tradeoff between avoiding values that are short enough to guess with

enough tries versus using unnecessary bandwidth to transfer them.

Implementers should limit using these signatures to protect lower value activities such as

access control on individual bid requests and identifying potential invalid traffic from purchased

ad impressions. Transactions of that nature are what the protocol was designed to protect,

where we trade using a more compact signature against having a relatively remote risk of

guessing one value correctly. Implementers SHOULD NOT use this 72-bit signature scheme for

gating access to high value operations such as account access, funds transfer, or facilitating

substantial value bid requests: the protocol wasn’t designed for that purpose (even though the

risk should be relatively low).

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 44 of 59

Due to the volume of signatures transferred over the course of a day under normal operations,

an attacker with full access to all data could try to mine the data for collisions over signatures if

there were an algorithm to mine it, and those numbers. Even though there is a high probability

that there will be some signature value collision over the set of all signatures received by a

service (and thus shouldn’t be used as a unique identifier), the HMAC process absorbs the

message in computing the value. There would be little to no opportunity for someone to

leverage the birthday paradox [2] because there isn’t a method for the attacker to map an input

to a collision and the birthday paradox focuses on the probability of there being any collision

among a set of values. Thus, even with universal knowledge of all signatures ever generated

using a given key, we do not risk key wear out since the attacker cannot predict the HMAC

output.

The ads.cert Authenticated Connections specification requires that verifiers accept signatures

up to the maximum length generated by a 256-bit HMAC (43 character base64-encoded

values). Per the specification, verifiers MUST NOT accept signatures shorter than 12

characters.

While the protocol allows signature length extension to gain additional security, this protocol

isn’t necessarily designed for the purpose of authenticating high-value actions. If a use case

surfaces for performing such high-value authentication, then we should evaluate alternative

methods, or we should at least consider allocating a separate high-value key namespace so

that those actions can remain in a closely monitored and separated security realm. High value

authentication operations should use full-length 43-byte signatures.

In-memory secrets protection

This security scheme will only be as secure as the protection of the signer/verifier private key

and the artifacts derived from it. To keep a tight latency profile, we want to calculate the shared

secret value ephemerally and retain it for the lifetime of the process. Risk exists of secret

compromise either by obtaining the private key or derived secrets from memory. There are

various risk vectors that could allow this compromise:

● Triggering the application to dump memory contents, including

○ OS level debugging action

○ Snapshotting the container/VM memory state

○ Forcing application to page memory to disk in a location that can be

compromised (potentially by exploiting a memory-consuming system weakness)

○ Exploiting a remote vulnerability (e.g. a Heartbleed-style bug) in the application,

infrastructure, container, or OS

Prior to finalizing the specification, we need to evaluate whether the static/static shared secret

derivation is sufficient for shared secret calculations, or if we should introduce a further

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 45 of 59

partitioning by using a key derivation function (KDF) [3] applied to the shared secret. Use of a

KDF is generally recommended with X25519 [4] when used as an encryption key, although this

should be less of a concern when using it as a key for HMAC.

With that said, we may be able to take advantage of a KDF to create some degree of shared

secret rotation that’s based on the signature timestamp. For example, the key used in the

HMAC could be a function:

mesage_timestamp = "210531T123456"

salt = substring(message_timestamp, 6) // "210531"

hmac_key = HKDF(salt, X25519(my_private, their_public))

In this model, the effective key for the HMAC operation could rotate daily (or hourly, etc)

allowing for architectural refinements that can further protect the private key and limit the time

period for which a compromised shared secret could be abused. For instance, it could be the

responsibility of a separate, higher-security process to hold the only access to the organization’s

private key, and that system could be used to push time-constrained shared secrets to the

backend processes that need them for signing. As long as that high-value process isn’t

compromised, the compromise of any other component would have a much more limited impact

as long as the compromise isn’t persistent. A change of this nature would make the code and

architecture more complex, though.

Availability risks

An attacker could take actions that try to make the signing infrastructure unavailable for

creating/verifying signatures. There are a few potential attack vectors:

● A naive verifier implementation will attempt to look up DNS records for any and all

counterparties specified in signature messages. For example, an attacker could present

signatures claiming to be from millions of gibberish, generated domain names. This

could result in the system exhausting various resources, including:

○ In-memory caching of domain interest lists and calculated shared secrets

○ Hosted or external DNS recursive resolver quota used to resolve the hostnames

(potentially creating collateral impact to other applications)

● DoS attempts against a signing/verification counterparty’s authoritative DNS servers

could result in DNS being unavailable to serve public key details.

○ This may be more of a concern for lightly provisioned DNS servers or zone

delegation to an underpowered instance.

● DoS attempts against signing/verification infrastructure by flooding these components

with signature requests

○ Individual CPU cores should be able to perform signature generation/verification

scalably, but a DoS attack could overwhelm RPC quota/induce load shedding for

these components if too many signature-related operations get attempted.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 46 of 59

To mitigate DNS DoS risks, verifiers should accumulate and vet the client counterparties they

wish to verify based on other complementary signals about the inbound signed traffic. Verifiers

need not attempt to immediately verify every new domain they encounter. The ads.cert OSS

will provide verifiers with a means of defining this domain allowlist through integrator automated

processes and/or manual configuration.

Signers could also be susceptible to DNS DoS, although the surface area should be much

smaller. The main vector for compelling a signer to attempt signing against a new counterparty

would be through passing URLs via VAST responses (VAST wrapper, creative fetch, impression

tracking, etc.) which the signer’s HTTP client will try to invoke and thus add domains to the DNS

discovery process.

Key compromise risks

The ads.cert OSS encourages maintaining private keys as encrypted values within files

submitted to the integrator’s source code repository. There are two main risks associated with

this approach to mitigate:

● Compromise of the encrypted keys due to weak security

● Attacking the configuration file in its source repository, adding an unauthorized key to the

keyring

These risks should be sufficiently mitigated as long as the keys are properly encrypted using

modern authenticated encryption, ideally with keys managed by a KMS.

All key encryption flavors (KMS, local) provided by the ads.cert OSS will use authenticated

encryption with associated data (AEAD) to simultaneously assure confidentiality and authenticity

of the keys maintained in the ads.cert keyring file. Implementation details are up to the specific

KMS platform, but generally these will use 256-bit Advanced Encryption Standard (AES-256)

keys in Galois Counter Mode (GCM), padded with KMS-internal metadata, as the method for

implementing AEAD. This prevents an attacker from crafting arbitrary encrypted key material

and having the system attempt to decrypt it for use: the KMS will reject attempts to decrypt a

key that fails this AEAD check. This limits attacks on the configuration file source code.

Implementers have the choice of relying on dedicated hardware security module (HSM) backed

KMS solutions to protect this key encryption key. These commercially available solutions may

already be in use within on-prem/hosted environments, and various cloud providers offer HSM-

backed KMS in a pay-per-use model.

Implementers should deploy sensitive applications within confidential computing environments

(those which encrypt containers in memory at runtime, such as cloud offerings using AMD

EPYC-CPU or Intel SGX), where available.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 47 of 59

Network ingress/egress should be appropriately firewalled.

RPC server signer deployment risks

The RPC server needs to provide adequate protection against unauthorized invocation. While

less severe than outright key compromise, being able to generate arbitrary signatures for

unauthorized traffic could be an insider risk. The RPC mechanism will natively support its own

authentication method that the deployment needs to use to provide access control.

The integration must provide adequate protection against man-in-the-middle attacks between

the system requesting verifications and the verifier RPC backend. This MitM could occur within

a network component or within the integrating application (e.g. replacing the RPC client

software with one that marks malicious traffic as verified). Mutual authentication will help

address this concern from the network risk perspective.

DNS integrity risks

A party’s public key must survive intact between the authorized system administrator’s original

intent and the counterparty using that information for authentication. Places where this could be

violated:

● Compromise of the authoritative DNS server’s configuration (e.g. introduction of

attacker-controlled records)

● DNS spoofing/cache poisoning attacks

Change control procedures and system security for an organization’s DNS configuration affect

much more than what’s in scope for the ads.cert protocols, so we must delegate those concerns

to the organization as part of their broader security posture.

As previously discussed, implementers have the option to use DNSSEC as a mechanism to

further protect their DNS-distributed public keys from unauthorized modification.

Message attack risks

An attacker could attempt to compromise the system using various malformed messages

required by the underlying protocols. We have three message formats specified:

● The signature message

● The key distribution DNS TXT record

● The signing authority delegation DNS TXT record

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 48 of 59

Parameter Pollution

HTTP Parameter Pollution [5] is a method that can be used to confuse parsing of parameterized

key/value pair messages. By including duplicate keys within the message, systems that rely on

multiple message parsing implementations--particularly when multiple software libraries,

languages, or software packages attempt to parse the same message and could arrive at

different interpretations.

Except where noted, the ads.cert protocol parsers expect a fixed set of parameters in the

protocol messages. The OSS includes unit tests covering these validation checks.

To permit protocol enhancements over time, parsers will not reject parameters unknown to their

programming.

Server-side request forgery (SSRF) risks

Web server applications that make their own outbound HTTP requests can be vulnerable to

server-side request forgery (SSRF): a scenario where an attacker provides the application with

a URL to invoke that goes against the application’s intended use. The ads.cert protocols don’t

address SSRF risks on their own, but they do have hardening that helps assure the verifier that

URLs aren’t being invoked under certain exploit circumstances. By requiring that the signed

message include a signature over the entire URL string that the client is trying to invoke, the

verifier receiving the request can be better assured that the signature has been solicited under a

constrained set of expectations rather than under duress.

Open source supply chain attack risks

Being an open source Go project, we will be relying on other Go modules as dependencies

within the build process. These dependencies could introduce security vulnerabilities by

accident or deliberately.

Surface areas include:

● Core key management components (signer/verifier; DNS fetch process)

● Language-specific integrator API

○ Primary Golang implementation

○ Adapters for other languages

Potential risks include:

● Exfiltration of key material

○ Via network protocols such as HTTP/HTTPS; DNS; raw TCP/UDP, etc.

○ Via encoding into signature messages

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 49 of 59

● Infiltration of bogus public key material to trick verification (include a public key controlled

by attacker as trusted)

● False reporting of signatures from a specific source as being “valid” (introduced either in

the core signing components or the language-specific integrator API)

● Other nefarious actions unrelated to ads.cert

To minimize this risk, we will tightly constrain the direct and indirect dependencies that the open

source software introduces.

Risks could exist for introducing compromises via independent open source dependencies not

introduced by our OSS supply chain. For example, a language that allows hot-swapping

implementations of a library at runtime could replace the integrator API with a wrapper that

always approves certain bogus signatures.

Insider risks

An insider with privileged access to systems could use this access maliciously. Risks include:

● Exfiltration of private key material, letting the attacker generate valid signatures for

improper traffic

● Modification to system configuration, including key configurations, DNS records,

counterparty authentication administrative override policies

● Modification of IAM policies to permit unauthorized KMS access for decrypt or encrypt

operations

● Introduction of code that modifies ads.cert component behaviors

Much of these concerns are outside the scope of our open source software, but we can advise

on practices to mitigate these risks, including:

● Role-based access controls to sensitive operations

○ Configuring to prohibit administrator direct access to KMS encrypt/decrypt

functions

● Limiting deployment to builds created from a protected workflow, including:

○ Built from code submitted to organization’s official source code version control

system

○ Code review process

○ Passing test automation and configuration constraint verifications

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 50 of 59

Cryptographic agility

As time progresses, security researchers tend to find weaknesses in existing cryptographic

algorithms and develop new ones which resolve those weaknesses. While the algorithms we’ve

chosen are widely utilized industry standard solutions, we must anticipate the need to upgrade

algorithms in the future.

We do not need a specific strategy for this at the moment beyond outlining a few reasonable

approaches. A few options:

● Try to pack additional algorithms into the same

_delivery._adscert.<<call_sign_domain>> DNS record, knowing that we will have

to modify the implementation to concatenate multiple 255 byte values.

● Simply use a separate DNS name when we need to update to a different crypto scheme,

e.g. _deliveryv2._adscert.<<call_sign_domain>> or

_deliveryx448._adscert.<<call_sign_domain>>

Spam and abuse considerations

HTTP request header spam

As mentioned in availability risks, the signature HTTP request headers create a considerable

abuse surface area if not carefully handled by verifiers. A naïve implementation could lead to

the system attempting to excessively look up DNS records.

Invalid signature spam

A malicious party could attempt to undermine the credibility of an honest party by flooding the

verifier with:

● Signatures which do not validate correctly

● Messages missing a corresponding signature, such as those falsely reporting an error

status within the message

One mitigation for this issue could be to evaluate IP address reputation. Presumably we would

expect a server to receive a consistent stream of events from an individual client IP address that

either all/mostly contain valid signatures, or none contain valid signatures at all. Establishing IP

address reputation info may help a verifier wave through requests that present abnormal status

codes but are otherwise interleaved with valid requests. Implementing this falls outside the

responsibility of the ads.cert OSS package, but we can advise implementers about this risk and

potential strategies to handle it.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 51 of 59

Privacy considerations

Avoiding public key signing over consumer activity

Using symmetric keys for signing means that signers aren’t generating a public key signature

cryptographic record of consumer activity.

Public key cryptographic signature artifacts are an issue with the DKIM protocols used to sign

email. In its current form, DKIM encourages attackers to compromise mailboxes so that they

can obtain long-life evidence that a particular email provider originated a specific email from the

sender claimed in the email message. It need not even be the sender’s mailbox that gets

compromised: any party receiving the email can attempt to leverage the DKIM signature as

evidence of authenticity. This limitation in the DKIM standard is not one that we want to

emulate.

Because the ads.cert protocols use symmetric key signatures, we gain two protections against

this type of attack.

● Only parties to the signature are able to make any use of the signature; otherwise, the

signature cannot be distinguished from a randomly-generated number

● Either the sender or receiver could have generated the signature associated with a

message, creating plausible deniability about the message authenticity if attempting to

use it within a third party context

Signatures are further tunneled within HTTPS connections using TLS, so they are not available

to a man-in-the-middle observation of the transmitted signature without some form of TLS

compromise.

Preventing using ads.cert for B2B non-repudiation

Using symmetric keys for signing protects participants from signatures being used as non-

repudiation artifacts. The ads.cert protocols aren’t designed to be used--nor are they intended--

as proof of events that can be subsequently shared with another party as evidence of some

business-to-business transaction or activity. We explicitly designed this protocol as an

authentication and message integrity mechanism so that one party can attest its identity to

another. Both parties possess the shared, symmetric secret, meaning that both parties would

be in a position to “forge” a signature over an arbitrary message. This trapdoor undermines

being able to present a signature to a third party as proof that a specific party originated the

activity, as either party could have crafted the message.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 52 of 59

Logging of URL and body hashes

Offline verification of signatures will require logging of the full signature message and the

body+URL hashes. These hashes will provide some degree of information about the body/URL

invoked. For a body or URL values containing few or predictable values, these hashes will

provide information that can reconstruct the input behind the event so long as the input can be

guessed and compared against the logged hash. A privacy attack against this scheme could

thus attempt to build a rainbow table over possible inputs to the SHA-256 hashing algorithm.

Mitigations that could attempt to make the rainbow table approach marginally more difficult

could require updating the protocol to salt the hashes with some variable input (e.g. the

timestamp and nonce present in the message). Adding this enhancement only makes this

analysis technique more computationally expensive than computing a single rainbow table that

could interpret a wide range of predictable inputs.

The best protection against this attack is the addition of entropy into the URL or body. This

entropy could occur from natural, existing sources, such as impression tracking URLs

containing auction identifiers or encrypted strings. To reduce risk of preimage attacks against

the hashes (e.g. through the use of a length extension attack), implementers should avoid

reliance on techniques that could allow an attacker to include arbitrary data with the goal of

obtaining a hash collision. (Obtaining a hash collision, while something that has been

accomplished with weaker algorithms such as SHA-1 or MD5, is an expensive effort and likely

not a practical risk for implementations of our protocol. No SHA-256 hash collisions are known

to have been generated.)

Product inclusion and equality

Technology accessibility to businesses

It’s important that we make this technology accessible to businesses of all sizes. Just as

individuals operating their own website can enjoy protection of their visitor traffic using HTTPS

over TLS and free certificates issued by authorities such as Let’s Encrypt, that same individual

should have the ability to utilize ads.cert protocols for signing or verification while growing a new

publishing or ad technology business. We’ve attempted to make the adoption of ads.cert

protocols require minimal time, effort, and hosting resources. Materials such as the open

source library and these documents help all participants achieve a consistent deployment using

open security techniques available for inspection and feedback from the community.

Administrative controls

TODO

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 53 of 59

Documentation

User’s guide

TODO: Publish using readthedocs.org or gitbook.com as an automated formatting solution?

Testing plan

Load testing environment

TODO

OSS CI/CD environment

We will use the IAB Tech Lab’s subscription to the Travis CI hosted CI/CD platform as a means

for presubmit testing of pull requests.

Test bid request traffic environment

TODO

Hosted compatibility testing solution

TODO

Work estimates

TODO

Launch plans

Publication of open source software suite

IAB Tech Lab would launch this product by publishing these documents, the open source

software suite, and an appropriate user’s guide.

Any implementers incorporating this product will have the option to start generating unsigned

HTTP request headers informing the servers they invoke of their claimed identity and

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 54 of 59

participation in this standard. This will make those counterparties aware that they can start

receiving requests with signatures once they start publishing their public key in DNS.

Integration into Prebid Server

To facilitate rapid adoption, we propose that the OSS implementation be integrated into Prebid

Server so that any server-to-server requests being sent from that platform can be decorated

with ads.cert signatures. A draft of the changes required to add this integration can be found

here, although a small amount of additional work would be required to add conditional logic for

activating this functionality via configuration files.

Software release process

To facilitate deployment, we will configure the CI/CD environment to generate container

snapshots on an ongoing basis, labeled as a “nightly” or “development” build label. Upon

review and vetting with the team, we will designate an appropriate snapshot from this process

as a versioned release.

(TODO: figure out how to label these releases with versions so that parties building from source

can upgrade to those numbered releases.)

Rollback/degradation/safe mode strategy

TODO

Alternatives considered

Key distribution protocols

Generally speaking, we wanted to avoid distributing public keys from HTTP endpoint well-known

URLs due to the complexity that crawling these URLs introduces in practice. We have

extensive (negative) experience with crawling ads.txt, app-ads.txt, and sellers.json IAB Tech

Lab standards formats and find that there are various reoccurring issues that we want to avoid

entirely by leveraging DNS. For example, it’s very common that a corporation’s root domain

configuration (e.g. example-company.com) will resolve to IP addresses operated by their

website content delivery network. The files that they publish often have to be hosted on a

redirect location and can result in multiple crawler redirects. We encounter misconfigurations,

geographic restrictions, HTTP downgrades, robots.txt crawl restrictions, and a whole list of other

issues that we won’t encounter by avoiding HTTP-based services entirely.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 55 of 59

DNS is the original distributed, cached, scalable key/value store, and its organization lends to

delegating all of the _adscert subdomain activities to a separate DNS zone if desired. The

key algorithms we use are compact and let us distribute four public keys within one 255-byte

DNS TXT record. X25519 is a highly-specified standard that leaves no room for introducing

additional parameters such as the base point: all are defined by the RFC.

JSON Web Keys (JWK)

JWK was designed to be a general envelope format for storing and sharing key material, with

attributes annotated using JSON markup. The protocol can contain public keys, private keys,

and symmetric keys. The protocol can specify well-known algorithms outlined in the RFC 7518

JSON Web Algorithms (JWA) [6] spec. In some circumstances, having this degree of flexibility

gives options for changing cryptographic algorithms over time: a good goal for an Internet

standard. This modular approach allows adding new algorithms and deprecating old ones.

Flexible standards like this can, however, introduce security risks. Typically one manages the

complexity of working with such a protocol by introducing libraries that can parse the message

into the key material needed for the application. These libraries become a surface area, either

by misconfiguration or by malicious message attack.

JWK doesn’t lend well to distribution using DNS (something we want to reduce key crawling

moving parts).

X.509 certificates

We initially explored and prototyped using X.509 certificates as a means for distributing public

keys via well-known URIs on websites. The rationale here is that X.509 is a widely adopted

standard that predates the Internet and has support within a wide range of tools.

X.509 suffers from many of the same problems as JWK. In addition to having a large number of

parameters for defining the key, there are a litany of additional metadata fields and extensions

that are immensely confusing to understand and use correctly. In addition, certificates are

encoded in a binary format (ASN.1) that requires special tools to interpret, and none of the

default options for interpreting this are great (e.g. OpenSSL command line tools aren’t very

informative, as they present an elided view). X.509 relies upon either using a library to parse

the encoded data into fluent constructs, or it requires parsing the format using low-level ASN.1

parsing libraries. Both are quite painful to work with. These are details that the OSS

implementation could hide from the integrator, but it just doesn’t seem worth the hassle to use

this protocol when we are no longer pursuing a mutual TLS protocol for client authentication

which would have required X.509 certificates.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 56 of 59

PKCS/PKIX standardized formats

Falling within the same category of X.509 complaints, there’s an option to use the core ASN.1

encoding formats for the public key alone. Again, this is painful to parse, and it increases the

encoded message size.

Signature protocols

JSON Web Tokens (JWT)

JWT is a widely used standard for authentication mechanisms across a variety of applications,

and we initially investigated using this protocol. Various off-the-shelf open source software

packages can be used to generate, sign, and verify authentication tokens using this protocol: a

valuable proposition for a set of protocols that would need to be ported to different

environments.

JWT suffers from many of the same problems as JWK, though. Because it intends to be a

generalized solution for many cryptographic primitives, it creates a large surface area for

attacking weaknesses in handling the protocol. The most widely known problems with JWT

stem from the fact that “none” is an option that can be specified for the signature algorithm!

(This has caused so many security compromises in OAuth and other integrations that a security

researcher by the handle “zofrex” created https://www.howmanydayssinceajwtalgnonevuln.com/

to poke fun at the fact that JWT “alg=none” security vulnerabilities are so common.)

In a blog post [7], “zofrex” provides a succinct description of the protocol:

You don’t need to know everything about JWTs to follow along here, but you do

need to know this much: A JWT consists of three parts: a header, a payload, and

an optional signature. Here’s an example:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEifQ.eyJuYW1lIjo

iem9mcmV4IiwibWVzc2FnZSI6ImhlbGxvLCB3b3JsZCEifQ.40IhxsQj3rVqfQ

SpdzZTroSs1onXrTJUsy6yC1SadK0

Each part is Base64 encoded, which isn’t important here. Once decoded, it looks

like this:

{"alg":"HS256","typ":"JWT","kid":"1"}.{"name":"zofrex","messag

e":"hello, world!"}.<inscrutable cryptographic soup>

The header tells whoever is verifying the JWT which cryptographic algorithm was

used to sign it (alg), and optionally an identifier for the key it was signed with

(kid).

https://www.howmanydayssinceajwtalgnonevuln.com/
https://www.zofrex.com/blog/2020/10/20/alg-none-jwt-nhs-contact-tracing-app/

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 57 of 59

For application developers and administrators, JWT presents a significant usability issue. JWTs

must be processed by a decoder to obtain any information about the encoded authentication

message (human base64 fluency notwithstanding). This creates an additional impediment to

quickly isolate the relevant signatures and diagnose problems without processing the events

using specialized tooling.

Simply avoiding the JWT protocol is preferred since we can craft a solution that optimizes for

brevity (important when being sent on bid requests) and contains the attributes relevant to our

problem space. With a customized protocol, we have more flexibility to specify constraints

appropriate for a protocol that focuses on combating invalid traffic.

TLS Mutual Authentication

While this would have been an ideal solution in many ways, as discussed earlier in prior

designs, the main problem with trying to use mTLS is the fact that we would very much be

pushing the boundaries of what is a normal, typical use of the protocol. Doing so introduces

risks, summarized here:

● Significant risk in creating consumer-visible authentication prompt if the hostname for the

mTLS endpoint were ever exposed to end-user devices (incidents that have happened

before in ad tech)

● Risks introduced by requiring network topology changes to work around limitations in

HTTPS load balancing

○ Requires introduction of dedicated mTLS termination solution past load balancing

○ Requires deploying reverse proxy instances (e.g. NGINX) which will increase

security surface area

○ Potentially bypasses existing denial of service protection mechanisms

● TLS client certificates get passed in plain text for protocols prior to TLS 1.3

If we were able to successfully standardize around mTLS (without creating a supportability

nightmare), the protocol would have given us a well-utilized foundation built off of the widely

deployed TLS standards. We would gain many of the benefits achieved in the current ads.cert

protocol, such as avoiding creating public key signatures over communications.

One downside of the mTLS security model is the fact that clients have a passive role in

negotiating authentication to web servers. Forms of SSRF attacks exist where a client could be

“tricked” into signing a URL invocation that’s unrelated to the ad impression being delivered.

Standard HTTP client libraries simply present the client certificate to any subsequent URL

redirect from an initial invocation. By instead putting the signing operations more directly in

control of the application logic triggering URL invocations, choosing which events to sign

becomes a much more deliberate action.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 58 of 59

TLS client authentication may be vulnerable to notary based privacy attacks (although this is a

speculative concern, as no evidence was found thus far regarding attempts to notarize client

communications: only server). The now obsolete TLS 1.0 and 1.1 protocol versions were

susceptible to having a “witness” system escrow a portion of the key exchange material as a

means of “proving” that a website served some content. The now-defunct TLSnotary [8] project

is one example of this method. Newer projects such as TLS-N [9] and PADVA [10] claim to

support TLS 1.3, with both including a public blockchain verification component.

Ring signatures

Ring signatures [11] let an individual generate a signature associated with a group of public

keys where the signature can be verified as originating from one of the keys within the group,

but it’s not possible to identify which private key was used to generate the signature.

It would be possible to maintain our repudiation requirement by implementing signatures using

this scheme, but we would not be able to retain our signature confidentiality requirements.

Anyone with knowledge of the participants’ public keys would be able to verify that at least one

of the parties signed the message, but we don’t want this feature given our requirements.

Anyone who doesn't possess the shared secret value cannot verify HMAC-based signatures,

and this behavior is explicitly what we want. A truncated HMAC signature requires substantially

fewer bytes to transfer and less computational resources to calculate.

 ads.cert Open Source Software Design Doc

© 2021 IAB Technology Laboratory https://iabtechlab.com/standards/ads-cert Page 59 of 59

References

[1] Quynh Dang. 2012. NIST Special Publication 800--107 Revision 1: Recommendation for

Applications Using Approved Hash Algorithms. https://csrc.nist.gov/publications/detail/sp/800-

107/rev-1/final

[2] Birthday Paradox, via https://en.wikipedia.org/wiki/Birthday_problem

[3] Key derivation function, via https://en.wikipedia.org/wiki/Key_derivation_function

[4] RFC 8418: Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm with X25519

and X448 in the Cryptographic Message Syntax (CMS).

https://datatracker.ietf.org/doc/html/rfc8418#section-2.2

[5] HTTP Parameter Pollution, via https://owasp.org/www-project-web-security-testing-

guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-

Testing_for_HTTP_Parameter_Pollution

[6] RFC 7518: JSON Web Algorithms (JWA), via https://datatracker.ietf.org/doc/html/rfc7518

[7] zofrex. 2020-10-20. How I Found An alg=none JWT Vulnerability in the NHS Contact

Tracing App. https://www.zofrex.com/blog/2020/10/20/alg-none-jwt-nhs-contact-tracing-app/

[8] “TLSnotary - a mechanism for independently audited https sessions” via

https://tlsnotary.org/TLSNotary.pdf

[9] H. Ritzdorf, “TLS-N: Non-repudiation over TLS Enabling Ubiquitous Content Signing for

Disintermediation”, 2018 Network and Distributed System Security Symposium (NDSS), 2018.

via https://spiral.imperial.ac.uk/bitstream/10044/1/85569/2/ndss2018ritzdorf.pdf

[10] P. Szalachowski, "PADVA: A Blockchain-Based TLS Notary Service," 2019 IEEE 25th

International Conference on Parallel and Distributed Systems (ICPADS), 2019, pp. 836-843,

doi: 10.1109/ICPADS47876.2019.00124. via https://ieeexplore.ieee.org/document/8975811

[11] Ring signature, via https://en.wikipedia.org/wiki/Ring_signature

https://csrc.nist.gov/publications/detail/sp/800-107/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-107/rev-1/final
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Key_derivation_function
https://datatracker.ietf.org/doc/html/rfc8418#section-2.2
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution
https://datatracker.ietf.org/doc/html/rfc7518
https://www.zofrex.com/blog/2020/10/20/alg-none-jwt-nhs-contact-tracing-app/
https://tlsnotary.org/TLSNotary.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/85569/2/ndss2018ritzdorf.pdf
https://ieeexplore.ieee.org/document/8975811
https://en.wikipedia.org/wiki/Ring_signature

	Documentation links
	Executive Summary
	Objective
	Requirements
	Functional
	Non-functional

	Out of scope

	Related work
	Original ads.cert efforts
	Email security protocols
	Prior designs

	Glossary
	Integrator-visible terms
	Terms internal to open source implementation

	Infrastructure
	Core Golang open source software application
	Containerization tools
	Storage platform
	Secrets management platform

	Success criteria
	Industry adoption
	Reliability and performance
	Invalid/unauthorized traffic reduction
	False-positive rejection/filtration performance
	Actionable security risk reports
	Protocol resource overhead
	Ease of implementation
	Administration overhead

	Detailed design
	Component architecture
	Fully in-process and all-in-one ads.cert server implementation process flow
	Persistent, centralized DNS refresh management option

	Public key distribution
	DNS record format
	Generating a key
	Securely storing keys

	Integrator API
	API initialization and configuration
	API utilization

	Calling backend signatory RPC server
	Signatory RPC service IDL

	DNS interest loop
	Persistence
	Deriving shared secrets

	Signed message construct
	Message variations for abnormal operations

	Server deployment
	Runtime configuration
	Identity and Access Management (IAM) integration
	Application container
	Batch operation

	Project information
	Code location
	Repository layout
	Code review and change management procedures
	Open source software dependencies
	Vulnerability disclosure process

	Measuring improvements
	Caveats
	Monitoring
	Infrastructure
	Signatory API operational and performance metrics
	DNS refresh loop metrics
	Counterparty participation and performance analytics
	Crawl quality

	Latency
	Signing/verification latency objectives
	DNS fetch latency
	Application startup-to-healthy latency

	Scalability
	Microbenchmarks
	Load expectations and testing
	Responsiveness to traffic shifts

	Internationalization
	User messaging
	Domains
	Documentation

	Logging plan
	DNS crawl logging
	Auditable security events

	Failure modes
	Serving-related failures
	Integrator stub failure to connect to RPC signer
	RPC signer overload/latency increase
	Memory exhaustion of indexing quota
	Failure to index updates
	HTTP request related failures

	DNS related failures
	KMS related failures

	Redundancy and reliability
	Dependency considerations
	DNS recursive resolver unavailability

	Risk considerations and mitigations
	Impact to DNS recursive resolvers

	Data integrity
	Preventing loss of private key material
	Preventing loss of DNS crawl responses

	Data retention
	DNS crawl responses

	SLA requirements
	DNS unavailability tolerances

	Security considerations
	Cryptanalysis
	Signature collision risk
	In-memory secrets protection
	Availability risks
	Key compromise risks
	RPC server signer deployment risks
	DNS integrity risks
	Message attack risks
	Parameter Pollution

	Server-side request forgery (SSRF) risks
	Open source supply chain attack risks
	Insider risks
	Cryptographic agility

	Spam and abuse considerations
	HTTP request header spam
	Invalid signature spam

	Privacy considerations
	Avoiding public key signing over consumer activity
	Preventing using ads.cert for B2B non-repudiation
	Logging of URL and body hashes

	Product inclusion and equality
	Technology accessibility to businesses

	Administrative controls
	Documentation
	User’s guide

	Testing plan
	Load testing environment
	OSS CI/CD environment
	Test bid request traffic environment
	Hosted compatibility testing solution

	Work estimates
	Launch plans
	Publication of open source software suite
	Integration into Prebid Server
	Software release process

	Rollback/degradation/safe mode strategy
	Alternatives considered
	Key distribution protocols
	JSON Web Keys (JWK)
	X.509 certificates
	PKCS/PKIX standardized formats

	Signature protocols
	JSON Web Tokens (JWT)
	TLS Mutual Authentication
	Ring signatures

	References

