
Secure HTML Ad Rich-media
Container (SHARC)
First Draft

Released for public comment April 28, 2022

Please email support@iabtechlab.com with feedback or questions by May 27, 2022.
This document is available online at https://iabtechlab.com/sharc

© IAB Technology Laboratory

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 1 of 46

Overview

Secure HTML Ad Richmedia Container (SHARC) is a secure container API for managed

communication between an app or webpage and a served ad creative.

Change Log

Version Summary

1st draft Initial release to public comment

Audience

Developers on the sell side for content platforms will need the details in this document for

implementing SHARC on their systems. On the buy side, creative developers will need this

document to develop display ads that make use of the SHARC APIs.

About IAB Tech Lab

The IAB Technology Laboratory (Tech Lab) is a non-profit consortium that engages a member

community globally to develop foundational technology and standards that enable growth and

trust in the digital media ecosystem. Comprised of digital publishers, ad technology firms,

agencies, marketers, and other member companies, IAB Tech Lab focuses on improving the

digital advertising supply chain, measurement, and consumer experiences, while promoting

responsible use of data. Its work includes the OpenRTB real-time bidding protocol, ads.txt anti-

fraud specification, Open Measurement SDK for viewability and verification, VAST video

specification, and DigiTrust identity service. Board members include ExtremeReach, Facebook,

Google, GroupM, Hearst Digital Media, Index Exchange, Integral Ad Science, LinkedIn,

LiveRamp, MediaMath, Microsoft, Oracle Data Cloud, Pandora, PubMatic, Quantcast, Rakuten

Marketing, Telaria, The Trade Desk, Verizon Media Group, Xandr, and Yahoo! Japan.

Established in 2014, the IAB Tech Lab is headquartered in New York City with staff in San

Francisco, Seattle, and London. Learn more at https://www.iabtechlab.com.

This document has been developed by the Secure Ad Container Working Group.

IAB Tech Lab Lead:

Katie Stroud, Sr. Product Manager, Ad Experiences

https://www.iabtechlab.com/

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 2 of 46

Special Thanks to:

Co-chairs on this project

● Jeffrey Carlson, Chartboost

● Aron Schatz, DoubleVerify

Other key contributors

● Kyle Grymonprez, Twitter

● Marian Rusnak, Verizon

● Bichen Wang, Chartboost

● Laura Evans, Flashtalking by Media Ocean

● Sarah Kirtcheff, Flashtalking by Media Ocean

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 3 of 46

TABLE OF CONTENTS

OVERVIEW .. 1

Change Log ... 1
Audience... 1
About IAB Tech Lab .. 1
Special Thanks to: .. 2

INTRODUCTION .. 5

GUIDING PRINCIPLES ... 5
SCOPE ... 6

Out of Scope .. 6
GOALS ... 6

HOW IT WORKS .. 7

THE RELATIONSHIP BETWEEN SIMID AND SHARC .. 8

SECURE BY DEFAULT .. 9

API REFERENCE .. 9

REFERENCE TABLE: CONTAINER .. 9
REFERENCE TABLE: CREATIVE ... 9

MESSAGES FROM THE CONTAINER .. 10

SHARC:CONTAINER:INIT ... 10
SHARC:CONTAINER:STARTCREATIVE .. 17
SHARC:CONTAINER:STATECHANGE .. 18

Table of possible container states.. 19
SHARC:CONTAINER:PLACEMENTCHANGE ... 20
SEE SHARC:CREATIVE:REQUESTPLACEMENTCHANGE ... 23
SHARC:CONTAINER:LOG ... 23
SHARC:CONTAINER:FATALERROR .. 24
SHARC:CONTAINER:CLOSE ... 24

MESSAGES FROM THE CREATIVE TO THE CONTAINER.. 25

SHARC:CREATIVE:FATALERROR ... 25
SHARC:CREATIVE:GETCONTAINERSTATE ... 26
SHARC:CREATIVE:GETPLACEMENTOPTIONS .. 26
SHARC:CREATIVE:LOG ... 28
SHARC:CREATIVE:REPORTINTERACTION .. 28
SHARC:CREATIVE:REQUESTNAVIGATION .. 29
SHARC:CREATIVE:REQUESTPLACEMENTCHANGE ... 29
SHARC:CREATIVE:REQUESTCLOSE.. 31

EXTENSIONS.. 31

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 4 of 46

COMMON WORKFLOWS ... 32

LOADING (AD LIFECYCLE) .. 32
TYPICAL INITIALIZATION WORKFLOW ... 34
NON-SHARC CREATIVES ... 34
HOW TO HANDLE CLOSE SEQUENCE ... 35
HOW TO HANDLE NAVIGATION EVENT .. 35
HOW TO HANDLE INTERACTIONS .. 35
HOW TO HANDLE AD END AND UNLOAD... 35
CREATIVE DELAYS RESOLVING INIT ... 35
CREATIVE REJECTS INIT .. 36

ERROR HANDLING AND TIMEOUTS ... 36

ERROR CODES .. 36
CONTAINER TIMES OUT .. 38
CREATIVE TIMES OUT .. 38

MESSAGING PROTOCOL .. 38

DATA LAYER .. 38
Data Structure.. 39
Messages Categories .. 40
reject Messages .. 41

TRANSPORT LAYER... 42
postMessage Transport.. 42
Message Serialization ... 42

SESSION LAYER.. 42
Establishing a New Session ... 43
Session Establishing Delays and Failures ... 44

COMPATIBILITY MODES .. 46

COMPATIBILITY MODE WITH MRAID ... 46
COMPATIBILITY MODE WITH SAFEFRAME .. 46

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 5 of 46

Introduction

Secure HTML Ad Richmedia Container (SHARC) is a secure container API for managed

communication between an app or webpage and a served ad creative.

SHARC is built on the same premise as two of IAB Tech Lab’s ad container standards:

SafeFrame and Mobile Rich Ad Interface Definition (MRAID). SafeFrame was designed to run

in-web and MRAID was designed to run in a webview in mobile in-app devices. The trouble with

these two standards is that they’re both very similar and yet different enough that you would

have to build two different ad creatives to run a campaign across both web and mobile.

Several ad platforms have tried to build a bridge between the two APIs so that an MRAID ad

could also run in a SafeFrame container and a SafeFrame ad could run in an MRAID container.

Unfortunately, the differences are stark enough that these attempts at cross-compatibility never

really worked out.

The Safe Ad Container working group for ad experiences at IAB Tech Lab have started from the

ground up to build a standard for managing rich interactive display ads. Our motto for SHARC

is:

Build one ad; serve it everywhere.

With SHARC, a creative developer can build one ad with all the available API functions and

serve it to any connected display platform that has implemented SHARC. This is not just limited

to web or mobile in-app, it includes a variety of platforms (such as CTV) that are available today

and future platforms.

Guiding principles

● Performance

● Industry standards interoperability

● Consumer protection

● Publisher safety and security

● Low barrier of entry (simplicity and ubiquity)

● Minimize impact on key stakeholders in the supply chain (example: OMID included JS

libraries to reduce customization that impacted efficiency)

● No ambiguity (detailed specifics in both spec and implementation guide) - while also not

delaying release for the sake of clarifying, sub-groups to focus on blocking issues and

defying a process to get things done

● Extensibility (helps enable testing of new features before implementing)

● Graceful degradation

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 6 of 46

Scope

SHARC is intended for managing rich media ad interactions in display placements. While video

can be included in the final creative, SHARC provides no playback controls or tracking. SHARC

ads can also be served into video players that have implemented SHARC and may be a great

way to handle non-linear and companion ads in video ad placements, but this spec does not yet

cover that use case.

Out of Scope

The following ad tech operations are out of scope in SHARC:

● Ad request

● Ad delivery

● Measurement

● Ad tracking and reports

While the above operations are out of scope for SHARC, they play a role in the success of

SHARC and certain SHARC functions either use or support these operations.

For example IAB Tech Lab’s Advertising Common Object Model (AdCOM) is a standardized

data structure for relaying details about the placement, the creative, the context, and any other

information that all parties in the supply chain need for placing, tracking, and reporting on the ad

exchanges in the campaigns they run. It is a dataspec used in the ad request and response,

and SHARC requires data from the same dataspec to communicate some of these unchanging

details as part of the initiation cycle. AdCOM is the default and preferred dataspec to use, but

SHARC itself doesn’t supply any of this data; it only provides additional data expected to

change during runtime, such as the current state of the container, size changes, or volume

details.

The example above explains how other ad operations beyond loading and managing

interactions are left to other standards, thereby simplifying SHARC as much as possible. This

separation helps SHARC meet some of its guiding principles such as performance and

interoperability.

Goals

Write one ad; serve it anywhere.

This is the key goal of SHARC. In order to achieve this goal, we must achieve certain supporting

goals to integrate SHARC into systems and operations that make up the digital advertising

supply chain.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 7 of 46

Adoption is dependent on the following:

● Producing a clear and unambiguous spec for SHARC implementers (this document)

● Providing guidance for different operational audiences targeted to their specific needs for

making use of SHARC

● Developing reference code, tools, and examples that simplify implementation

● Creating an awareness of the challenges that SHARC solves in the marketplace for

display advertising, especially where no solution currently exists

● Educating different audiences on the benefits and use of SHARC

● Regular updates to support growing market needs

If you would like to get involved, please reach out to support@iabtechlab.com and we’ll set you

up. You can also visit our GitHub repository at https://github.com/IABTechLab/SHARC.

How it works

SHARC is a protocol for managing ad interactions in a secure container that prevents an ad

from accessing data on the platform where the ad displays. In the most simplistic overview of

how it works, the steps are as follows:

● [pre-SHARC] an ad is matched and delivered to the SHARC placement

● SHARC initiates. In this step, the following occurs:

○ The SHARC-enabled platform creates the secure (IE: an iframe on web, webview

on mobile) container

○ The SHARC container inserts the creative markup and the creative prepares its

resources

○ Once in a state to receive SHARC information, the creative informs the container

that it is ready to receive initialization information .

○ The SHARC container initializes and provides the creative with data about the

container.

○ Data about the environment (placement) and the creative is pulled from the

dataspec (default is AdCOM) along with any runtime details such as current size

and state and volume settings

○ Once the creative and the container are ready, SHARC asks the creative to start

and waits for the creative to respond

● Creative responds with “resolve” indicating that it is ready

● Creative executes, using SHARC functions to resize, navigate away from platform,

close, etc.

● Upon completion of the ad experience, SHARC signals a close function and unloads the

ad.

mailto:support@iabtechlab.com
https://github.com/IABTechLab/SHARC

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 8 of 46

A diagram and more detailed descriptions of different use cases are provided in the section on

Common Workflows.

The relationship between SIMID and SHARC

To develop SHARC, we looked to the structure of SIMID as a model. SIMID is IAB Tech Lab’s

Secure Interactive Media Interface Definition. Like SHARC, it uses a secure container to

manage an ad experience, except that SIMID functions in the context of a media player.

Discussion on whether SIMID should be extended to also handle display ads across platforms

or to develop a new standard (SHARC) to handle display ads separately from the SIMID video

standard was explored. The decision to create a separate standard emerged as part of the

following logic.

As API specs and standards at IAB Tech Lab evolve, there is an opportunity to develop new

APIs with shared design principles of existing APIs. Doing so creates a firm foundation upon

which new APIs can be built more rapidly while lowering the learning curve for the industry to

adopt new specs.

SHARC has opted to share the same messaging protocol and API structure that SIMID

developed in order to take full advantage of this opportunity. Sharing this core messaging

structure has enabled SHARC to more rapidly prototype a spec tasked with being the cross-

platform rich media successor to the Safe Frame and MRAID specs.

In adopting a lot of the API design, features and functionality, a common question asked is why

shouldn’t SIMID solve all use cases?

The three main reasons are specialization, flexibility and simplicity.

1. For specialization, SIMID was created exclusively to provide rich interactivity for

streaming audio and video ads. Expanding its scope beyond its intended use case is

exactly how its predecessor VPAID got into trouble. SHARC being separated as a rich

media container resolves any issues with SIMID becoming overloaded.

2. For flexibility, it allows both SIMID and SHARC to develop separately as market

innovations, needs and problems to be solved potentially fork former shared priorities.

3. For simplicity, SIMID and SHARC can keep a focused API spec relevant to each

solution. SHARC has no parallel use case for certain video functions, for example.

These improvements can be updated independently without forcing unnecessary version

updates on technology stacks.

It is important to have different tools for different use cases. Use SIMID when working with

VAST audio or video creative that need interactivity. Use SHARC when working with next-gen

rich media display HTML5 creative in web and other platforms. A use case for both specs could

be a VAST creative with interactivity and a companion ad as an end card. SIMID would be used

to overlay the video and SHARC would be used to display the companion end card.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 9 of 46

Secure By Default

One of the main tenets of SHARC is the focus on providing a robust and secure communication

and security framework for rich media ad experiences. The end result is that the container

performs almost all the functions needed for interacting with the greater publisher content (a

web page or an application). The creative must request for actions to be done on the container

and the container will either resolve or reject those requests. This puts the container in control

and allows for publishers to enable their expected consumer experience without an ad taking

over their content. There are common uses cases covered to allow for the wide range of ad

experience, but this standard ensures that an ad cannot present a poor consumer experience

without the consent of the container.

API Reference

SHARC is a set of messages and data structures that ad-rendering parties exchange using a

messaging protocol.

Reference Table: Container

API resolve reject

SHARC:Container:init resolve reject

SHARC:Container:startCreative resolve reject

SHARC:Container:stateChange n/a n/a

SHARC:Container:placementChange n/a n/a

SHARC:Container:log n/a n/a

SHARC:Container:fatalError resolve n/a

SHARC:Container:close resolve n/a

Reference Table: Creative

API resolve reject

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 10 of 46

SHARC:Creative:fatalError n/a n/a

SHARC:Creative:getContainerState resolve n/a

SHARC:Creative:getPlacementOptions resolve n/a

SHARC:Creative:log n/a n/a

SHARC:Creative:reportInteraction resolve n/a

SHARC:Creative:requestNavigation n/a n/a

SHARC:Creative:requestPlacementChange resolve n/a

SHARC:Creative:requestClose resolve n/a

Messages from the Container

SHARC specifies a group of messages that enables the container to transmit data, instructions,

or state changes to the creative. The container prepends such message types with the

SHARC:Container namespace.

SHARC:Container messages do not communicate ad creative states; SHARC dedicates

Messages Triggered by Creative Events to report creative status. A private message bus can be

created to inform internal systems on messages sent by the creative, or a public message bus

can be created to share these messages to other systems, such as measurement providers.

While some SHARC:Container messages expect resolve and/or reject creative responses,

other messages do not require replies.

SHARC:Container:init

The purpose of the SHARC:Container:init message is to relay information to the creative and

prepare for the creative to start the SHARC ad experience. See Typical Initialization WorkFlow.

The creative must respond to Container:init with either resolve or reject.

dictionary MessageArgs {

 required EnvironmentData environmentData;

 Supports supportedFeatures;

 Extensions supportedExtensions;

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 11 of 46

};

environmentData,

Information about publisher’s environment and container capacities upon initialization.

supportedFeatures,

Information about SHARC features supported that are beyond basic functionality.

supportedExtensions,

Information about any extensions supported.

dictionary EnvironmentData {

 required Placement currentPlacement;

 required Dataspec dataspec;

 required Data data;

 Required enum currentState;

 required string version;

 boolean muted;

 float volume;

};

currentPlacement,

Information about the container’s current placement properties such as dimensions,

location, inline or over content, etc.

dataspec,

The name and version of the dataspec that provides placement and creative

information. Default dataspec is AdCOM.

data,

The data provided by the dataspec identified.

currentState,

https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-float
https://heycam.github.io/webidl/#idl-float

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 12 of 46

The current state of the container: ready, active, passive, hidden, frozen, closing,

unloaded. See table for descriptions under SHARC:Container:stateChange.

version,

The full version number of the SHARC implementation.

muted,

True if known and device is muted.

volume,

If known, the volume level of the device, expressed as a number between 0 and 1.0.

dictionary Placement {

 required Dimensions defaultDimensions;

 boolean inline;

 enum standardSize;

 enum extendDirection;

 boolean push;

 boolean sticky;

};

defaultDimensions,

The standard dimensions and coordinates of the container.

inline,

True if the container is anchored within the content of the platform. False if the

container is placed over the content.

standardSize,

Indicates whether the current dimensions are one of a standard size: default, max,

min.

● default: the initial size of the container

● max: the standard maximum size the container allows. Maximum size may or may

not be the full view available to the container but is the max size allowed.

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 13 of 46

● min: the minimum standard size the container offers.

extendDirection,

Indicates the direction in which the container can extend when resized to larger

dimensions: all, up, down, left, right.

push,

True if container resize pushes content in direction of resize.

sticky,

True if container is “sticky,” meaning that it stays in place while content is scrolling up

until a given threshold.

dictionary Dimensions {

 required long x;

 required long y;

 required long width;

 required long height;

 enum anchor;

 };

x,

The x coordinate of the container anchor point.

y,

The x coordinate of the container anchor point.

width,

The width of the container in pixels.

height,

The height of the container in pixels.

anchor,

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 14 of 46

The anchor corner of the container: top-left, top-right, bottom-left, bottom-right.

Default is top-left.

dictionary Dataspec {

 required string model;

 required string ver;

 };

model,

The data structure model used to provide data. Default is adCOM.

ver,

The version of the data model identified above. Default is “1.0”.

dictionary Data {

 // Defined by the dataspec

 };

AdCOM example

dictionary Data {

 required AdcomAd ad;

 required AdcomPlacement placement

 required AdcomContext context

 };

data,

The data provided by the dataspec identified. Recommended AdCOM nodes:

● ad (see AdCOM Ad Object)

https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-float
https://heycam.github.io/webidl/#idl-float
https://heycam.github.io/webidl/#idl-boolean
https://heycam.github.io/webidl/#idl-float

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 15 of 46

● placement (see AdCOM Placement Object)

● context (see AdCOM Context Object)

dictionary Supports {

 Sizes supportedSizing;

 Navigation containerNavigation;

 boolean closeSequence;

 };

supportedSizing,

Information about container sizes supported.

containerNavigation,

Information about how the container handles navigation. The container always

handles navigation, except in situations where it’s not technically possible, and the

creative must always request navigation so that the container can log the instance.

closeSequence,

True if the container allows the creative to run a 2-second close sequence before the

container unloads.

dictionary Sizes {

 required Dimensions defaultSize;

 Dimensions maxSize;

 Dimensions minSize;

 };

defaultSize,

https://heycam.github.io/webidl/#idl-float
https://heycam.github.io/webidl/#idl-float

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 16 of 46

The container’s default dimensions and coordinates.

maxSize,

The maximum dimensions the container allows. If not supported, leave blank.

maxSize,

The minimum dimensions the container offers. If not supported, leave blank.

dictionary Navigation {

 boolean navigationPossible;

 boolean navigationAllowed;

 };

navigationPossible,

True if the platform in which the container operates supports navigation away from

the ad experience and can be handled by the container. If false, navigation away from

the ad experience must be handled by the creative (if possible); however, the creative

must still always request navigation so that the container can log the request.

navigationAllowed,

True if navigationPossible=true and container allows navigation away from the ad

experience.

dictionary Extensions {

 array supportedExtensions;

 };

https://heycam.github.io/webidl/#idl-float
https://heycam.github.io/webidl/#idl-float

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 17 of 46

supportedExtensions,

An array of extensions that the container supports. Each extension must include

parameters for labelName and version.

resolve

The creative acknowledges the initialization parameters.

If the creative delays calling resolve, see Creative Delays Resolving Init

reject

The creative may respond with a reject based on its internal logic.

dictionary MessageArgs

{

 required unsigned short errorCode;

 DOMString reason;

};

errorCode,

See Error Codes.

reason,

Optional information about cause of rejection.

The container then will follow the rejection workflow. See Creative Rejects Init.

SHARC:Container:startCreative

See Typical Initialization Workflow

The container posts SHARC:Container:startCreative message when it is ready to make the

https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init-reject
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init-reject
https://interactiveadvertisingbureau.github.io/SIMID/#dictdef-messageargs%E2%91%A6
https://interactiveadvertisingbureau.github.io/SIMID/#dictdef-messageargs%E2%91%A6
https://heycam.github.io/webidl/#idl-unsigned-short
https://heycam.github.io/webidl/#idl-unsigned-short
https://heycam.github.io/webidl/#idl-unsigned-short
https://heycam.github.io/webidl/#idl-unsigned-short
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-DOMString

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 18 of 46

iframe visible. The container waits for a resolve response to display itself. The interactive

creative should be ready to reply to Container:startCreative immediately.

SHARC:Container:init section describes the flow that precedes the instant the container emits a

Container:startCreative message.

resolve

By posting resolve, the interactive creative acknowledges that it is ready for display. The

creative should be ready to respond immediately. The container makes itself visible upon a
resolve receipt

Refer to Typical Initialization WorkFlow.

reject

When the creative responds with a reject, the container may unload the ad. The player reports

error tracker with the errorCode the creative supplied.

dictionary MessageArgs{

 required unsigned short errorCode;

 DOMString reason;

};

errorCode,

See Error Codes.

reason,

Additional information.

SHARC:Container:stateChange

The container posts a SHARC:Container:stateChange message whenever the container state is

changed. Certain container or environment events can trigger a state change. For example,

Container:init triggers the “ready” state. Or a change in focus, such as when a user switches

tabs in a browser, can change the state from “active” or “passive” to “hidden.” The new

container state is reported with the message.

https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-startCreative-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-startCreative-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-startCreative-reject
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-startCreative-reject
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 19 of 46

dictionary MessageArgs{

 DOMString containerState;

 };

containerState,

The current (new) container state, which is one of: ready, active, passive, hidden,

frozen, closing, unloaded. See reference chart below for definitions of states.

Table of possible container states

State Description

ready The container has successfully completed initialization (Container:init) and is
ready for the creative to start.

Possible previous states:
(none)

Possible next states:
active

active Container is currently in a space that is visible and in use (has focus and
input)

Possible previous states:
Ready (Container:init)
Passive

Possible next states:
Passive
Closing

passive Container is currently in a space that is visible but no longer in use (has
focus but no input).

Possible previous states:
active

Possible next states:
active
hidden

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 20 of 46

hidden Container is no longer visible or in use, but certain tasks may still be running
and the container has not yet been closed or unloaded

Possible previous states:
passive

Possible next states:
passive
frozen
unloaded

frozen Container function is unavailable while container waits for something such as
a response to a certain function

Possible previous states:
hidden
passive

Possible next states:
active
closing

closing The close sequence has been initiated and the container is in a state of
closing.

Possible previous states:
Frozen
Active

Possible next states:
Unloaded

unloaded The container has unloaded and can no longer function.

Possible previous states:
Closing

Possible next states:
(none)

The creative can request the current state of the container any time using
Creative:getContainerState.

SHARC:Container:placementChange

When the container changes its properties, such as dimensions and location (usually in

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 21 of 46

response to a request by the creative), it posts the SHARC:Container:placementChange

message. The message describes the container dimensions and coordinates.

dictionary MessageArgs{

 required Placement placementUpdate;

 };

placementUpdate,

Information about changes in the container properties, such as dimensions and

location.

dictionary Placement {

 Dimensions containerDimensions;

 boolean inline;

 enum standardSize;

 enum extendDirection;

 boolean push;

 boolean sticky;

};

containerDimensions,

The standard dimensions and coordinates of the container.

inline,

True if the container is anchored within the content of the platform. False if the

container is placed over the content.

standardSize,

Indicates whether the current dimensions are one of a standard size: default, max,

min.

● default: the initial size of the container

● max: the standard maximum size the container allows. Maximum size may or may

not be the full view available to the container but is the max size allowed.

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 22 of 46

● min: the minimum standard size the container offers.

extendDirection,

Indicates the direction in which the container can extend when resized to larger

dimensions: all, up, down, left, right.

push,

True if container resize pushes content in direction of resize.

sticky,

True if container is “sticky,” meaning that it stays anchored in place while content is

scrolling up until a given threshold.

dictionary Dimensions {

 required long x;

 required long y;

 required long width;

 required long height;

 enum anchor;

 };

x,

The x coordinate of the container anchor point.

y,

The x coordinate of the container anchor point.

width,

The width of the container in density-independent pixels.

height,

The height of the container in density-independent pixels.

anchor,

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 23 of 46

The anchor corner of the container: top-left, top-right, bottom-left, bottom-right.

Default is top-left.

See SHARC:Creative:requestPlacementChange

SHARC:Container:log

The purpose of the Container:log message is to convey optional, primarily debugging,

information to the creative.

Note: In SHARC prefixing log messages with “WARNING:” has a specific meaning. The
container is communicating performance inefficiencies or specification deviations aimed at
creative developers. For example, if the creative sends the requestPlacementChange
message but does not use the correct parameters (dimensions and coordinates), a
“WARNING:” message is appropriate.

dictionary MessageArgs{

 required DOMString message;

};

message,

Logging information.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 24 of 46

SHARC:Container:fatalError

The container posts a SHARC:Container:fatalError message when it encounters exceptions

that disable any further function. If feasible, the container waits for resolve response from

creative before unloading.

See Container errors out

dictionary MessageArgs{

 required unsigned short errorCode;

 DOMString errorMessage;

};

errorCode,

See Error Codes

errorMessage,

Additional information

resolve

The creative must respond to Container:fatalError with resolve. After resolve arrives, the

container unloads.

See Creative Errors Out

SHARC:Container:close

The container provides a close control and handles the Container:close and subsequent

Container:unload events. If supported, the container may allow the creative to run a close

sequence that is no more than 2 seconds long.

The container issues Container:close when:

● The user activates the close control

● The creative requests close with Creative:requestClose

https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-fatalError-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-fatalError-resolve

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 25 of 46

● Something in the content platform requires the container to close

resolve

The creative responds with resolve to acknowledge that the container is going to close. The
container may proceed to unload with or without creative response. If supported, the container
may wait for up to 2 seconds to allow the creative to run a close sequence.

Messages from the Creative to the Container

The creative posts messages to the container to request container state changes, obtain data,

and to send notifications. The creative prefixes its messages with the namespace

SHARC:Creative.

SHARC:Creative messages may require the container to accept and process arguments. With

some messages, the creative expects the container to respond with resolutions.

SHARC:Creative:fatalError

The creative posts SHARC:Creative:fatalError in cases when its internal exceptions prevent

the interactive component from further execution. In response to the Creative:fatalError

message, the container unloads the SHARC iframe and reports the errorCode specified by the

creative.

dictionary MessageArgs{

 required unsigned short errorCode;

 DOMString errorMessage;

};

errorCode,

See Error Codes.

errorMessage,

Additional information.

https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 26 of 46

SHARC:Creative:getContainerState

The creative posts a SHARC:Creative:getContainerState message to request the current

container state.

resolve

The container should always respond with resolve.

dictionary MessageArgs{

 enum currentState;

 };

currentState,
The current container state, which is one of: ready, active, passive, hidden, frozen,
closing, unloaded. See Table of Possible Container States for definitions of states.

SHARC:Creative:getPlacementOptions

The creative posts a SHARC:Creative:getPlacementOptions message to request information

about placement options.

resolve

The container should always respond with resolve, including in situations when the container is

unable to provide all expected values.

dictionary MessageArgs{

 required Placement currentPlacementOptions;

 };

currentPlacementOptions,

Information about current container properties, such as dimensions and location.

https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-getMediaState-resolve
https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-getMediaState-resolve
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-short
https://webidl.spec.whatwg.org/#idl-DOMString

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 27 of 46

dictionary Placement {

 Dimensions containerDimensions;

 boolean inline;

 enum standardSize;

 enum extendDirection;

 boolean push;

 boolean sticky;

};

containerDimensions,

The standard dimensions and coordinates of the container.

inline,

True if the container is anchored within the content of the platform. False if the

container is placed over the content.

standardSize,

Indicates whether the current dimensions are one of a standard size: default, max,

min.

● default: the initial size of the container

● max: the standard maximum size the container allows. Maximum size may or may

not be the full view available to the container but is the max size allowed.

● min: the minimum standard size the container offers.

extendDirection,

Indicates the direction in which the container can extend when resized to larger

dimensions: all, up, down, left, right.

push,

True if container resize pushes content in direction of resize.

sticky,

True if container is “sticky,” meaning that it stays anchored in place while content is

scrolling up until a given threshold.

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 28 of 46

SHARC:Creative:log

The message SHARC:Creative:log enables the creative to communicate arbitrary information

to the player.

Note: If the log message purpose is to notify the container about the container’s non-

standard behavior, the creative prepends Message.args.message with “WARNING:” in

the string. Warning messages are used to inform container developers about

occurences of non-fatal issues.

dictionary MessageArgs{

 required DOMString message;

};

message,

Logging information.

SHARC:Creative:reportInteraction

The SHARC:Creative:reportInteraction message enables a creative to delegate arbitrary

interaction metrics to the container.

These interaction metrics are URIs into which the creative may inject macros.

In response to the reportInteraction message, the container must:

● Send the trackers specified by the message as soon as possible.

● Replace any macros in the dataspec with the corresponding values.

● Accept and send the trackers with custom macros – leave non-standard macros intact

unless the publisher-ad integration involves custom macros processing.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 29 of 46

dictionary MessageArgs{

 required Array trackingUris;

};

trackingUris,

Array of URIs.

resolve

The player posts a resolve after it sends the trackers.

SHARC:Creative:requestNavigation

The creative posts the SHARC:Creative:requestNavigation message when an interaction or

some other event has triggered navigating to the creative’s clickthrough URI.

The container handles all navigation in situations where the function is available to the container.

In some situations, such as in web, navigation is handled by the browser. However, even when

the container cannot handle navigation to the creative’s link, the creative must always request

navigation so that the container is aware.

Navigation capabilities are provided upon initiation. See

SHARC:Container:init.supports.navigation for details.

SHARC:Creative:requestPlacementChange

The creative posts the SHARC:Creative:requestPlacementChange message when the creative

would like the container to modify its properties, such as size.

Requesting a placement change is a robust way to request a resize. Along with resize, the

creative can ask the container to expand in a specified direction or change the “stickiness” of

the container.

resolve

The container should always respond with resolve, including in situations when the container is

unable to provide all expected values. The container should also post the

https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-reportTracking-resolve
https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-reportTracking-resolve

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 30 of 46

SHARC:Container:placementChange message with updates to any changes in properties to the

container.

dictionary MessageArgs{

 required Placement changePlacement;

};

changePlacement,

Information about what container properties the creative would like to change.

dictionary Placement {

 Dimensions containerDimensions;

 boolean inline;

 enum standardSize;

 enum extendDirection;

 boolean push;

 boolean sticky;

};

containerDimensions,

The standard dimensions and coordinates of the container.

inline,

True if the container is anchored within the content of the platform. False if the

container is placed over the content.

standardSize,

Indicates whether the current dimensions are one of a standard size: default, max,

min.

● default: the initial size of the container

● max: the standard maximum size the container allows. Maximum size may or may

not be the full view available to the container but is the max size allowed.

● min: the minimum standard size the container offers.

extendDirection,

https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long
https://heycam.github.io/webidl/#idl-long

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 31 of 46

Indicates the direction in which the container can extend when resized to larger

dimensions: all, up, down, left, right.

push,

True if container resize pushes content in direction of resize.

sticky,

True if container is “sticky,” meaning that it stays anchored in place while content is
scrolling up until a given threshold.

SHARC:Creative:requestClose

The container ALWAYS handles closing the container, including providing the close function.

However, if the creative has a reason to close the container before the container’s close control

is activated, the creative can post the ShARC:Creative:requestClose message to ask the

container to close.

resolve

If the container can close, it responds with a resolve.

reject

If the container cannot close, it responds with a reject.

With the requestClose rejection:

● The container maintains its current state.

● The container continues posting messages as appropriate.

● The creative may unload and send a Creative:log message to report that it has

unloaded.

Extensions

SHARC cannot account for all possible use cases. In these circumstances, SHARC

implementers may include one or more extensions. Any extensions can be provided in the

Extensions node in init.

https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-requestStop-resolve
https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-requestStop-resolve
https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-requestStop-reject
https://interactiveadvertisingbureau.github.io/SIMID/simid-1.0.1.html#simid-creative-requestStop-reject

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 32 of 46

Common Workflows

Loading (Ad Lifecycle)

(creating container, preparing to execute ad)

Define the end-to-end lifecycle and break down by states

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 33 of 46

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 34 of 46

Typical Initialization Workflow

● Create Session happens

○ Creative asks for session

○ Resolve: Container creates session and sends info about what’s next (container

set up)

○ Reject: If session not created, reject includes details about why

● Container set up

○ Container sets up container

■ Sends details about environment, settings, etc. to creative

■ Use case: mute button settings defined, creative sets creative with

defined settings, tells container that it’s ready

○ Creative receives container details and responds (resolve/reject) with ready

details

■ Resolve: includes setting details

■ Reject: can’t get into ready state; go ahead and try to load something else

(include some specific use cases for when this happens, like connection

cut. Can’t send reject just because you want to; only in case where it’s

impossible. Rejecting just because you want to causes publisher to lose

opportunity)

● Start Creative (time to play the ad)

○ Getting to this point means that both container/creative have said they’re ready to

go and everything is in place.

Non-SHARC Creatives

SHARC as a container standard expects SHARC enabled creatives. However, as part of this

standard, a SHARC enabled container must be able to render a standard HTML type of creative

within its secure container, if possible, based on the container runtime environment. While the

ad experience will not be as robust as a SHARC enabled experience, the publisher content will

be protected by wrapping the creative in a secure container. However, SHARC dictates an

initialization and start workflow for creatives. In cases where the creative won’t respond to the

container, the container may assume that the creative is malfunctioning unless the creative

gives a hint to the container that it isn’t SHARC enabled.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 35 of 46

How to Handle Close Sequence

The container always handles close, but may allow for the creative to run a brief close (max 2

seconds) sequence upon initiating close. Upon close, the container may return to a default size

and position, minimize the container, or unload the creative and container.

● Upon init, container establishes whether close sequence is allowed and whether close

unloads the ad or returns to a default or minimum size.

● User initiates close using container-provided close feature.

● Container reports that close has been initiated.

● If container allows close sequence, creative runs close sequence and reports

SHARC:Creative:closeSequenceCompleted.

● Container executes close. If container doesn’t report closeSequenceCompleted within 2

seconds, container proceeds with close.

● If container returns to default or minimum size, container reports result.

● If container unloads in response to close, there is nothing to report.

Note: Each SHARC instance only ever contains one ad. If container wants to replace closed ad

with new ad, it must unload existing instance and replace with new instance and new ad. If

reloading the same ad, it’s still a new instance.

How to Handle Navigation Event

To-do

How to Handle Interactions

To-do

How to Handle Ad End and Unload

The following events trigger an ad end:

● User activates close control

● The environment in which the container is deployed (app, browser, etc.) has been shut

down

● The container encounters a fatal error

Creative Delays Resolving Init

To-do

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 36 of 46

Creative Rejects Init

To-do

Error Handling and Timeouts

If the creative cannot be executed the container should terminate the ad and fire an error.

If either the creative or container wants to terminate with an error the player should fire a 902

error. The creative or container should pass a specific error code to indicate why it errored out.

The creative can also hand back a string with extra details about the error.

Error Codes

Code Error Description

2100 Unspecified creative
error

Catchall error when no existing code matches the error.
Creative errors should be as specific as possible.

2101 Resources could not be
loaded

The SHARC creative tried to load resources but failed.

2102 Container dimensions
not suited to creative

The container dimensions provided were unmatched to
the dimensions the creative specified.

2103 Wrong SHARC version The creative could not support the container’s version
of SHARC.

2104 Creative could not be
executed

For an unspecified technical reason, the creative could
not be executed.

2105 Resize request not
honored

The container rejected the creative’s resize request.

2106 Pause?

2107 Player controls?

2108 Ad internal error The creative had an error not related to any external
dependencies.

2109 Device not supported The creative could not render or execute on the device.

2110 Container not sending

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 37 of 46

messages as specified

2111 Container not
responding adequately
to messages

2200 Unspecified container
error

Catchall error when no existing code matches the error.
Container errors should be as specific as possible.

2201 Wrong SHARC version The container could not support the creative’s version
of SHARC.

2202 Too much time
requested?

2203 SHARC creative
requesting more
functionality than
container willing to
support

2204 SHARC creative
executing actions not
supported

2205 SHARC creative is
overloading the
postmessage channel

2206 Media could not be
loaded?

2207 Media timeout?

2208 SHARC creative taking
too long to resolve or
reject message(s)

2209 SHARC creative
provided is not
supported on this
device

2210

Error CodeError TypeDescription1100Unspecified error.Catchall error if the creative could not

find a matching error code. The creative should be more specific in the error

message.1101Resources could not be loaded.The SIMID creative tried to load resources but

failed.1102Playback area not usable by creative.The dimensions the creative needed were not

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 38 of 46

what it received.1103Wrong SIMID version.The creative could not support the players

version.1104Creative not playable for a technical reason on this site.1105Request for expand

not honored.The creative requested to expand but the player did not allow it.1106Request for

pause not honored.The creative requested pause but the player did not pause.1107Play mode

not adequate for creative.The creative requires playback control but the player is not giving

control. This error should only fire if the VAST for the ad specified that it needs playback

control.1108Ad internal error.The creative had an error not related to any external

dependencies.1109Device not supported.The creative could not play or render on the

device.1110The player is not following the spec in the way it sends messages.1111The player

is not responding adequately to messages.1200Unspecified error.Catchall error if the player

could not find a matching error code. The player should be more specific in the error

message.1201Wrong SIMID version.The player could not support the creatives

version.1202SIMID creative requesting more time than the player is willing to

support.1203SIMID creative requesting more functionality than the player is willing to

support.1204SIMID creative is doing actions not supported on this site.1205SIMID creative is

overloading the postmessage channel.1206The SIMID media could not be loaded.1207Media

Timeout.The ad media creative buffered for too long and timed out.1208The SIMID creative is

taking too long to resolve or reject messages.1209The SIMID creatives media from the VAST

response is not supported on this device.1210The SIMID creative is not following the spec when

initializing.1211The SIMID creative is not following the spec in the way it sends

messages.1212The SIMID creative did not reply to the initialization message.1213The SIMID

creative did not reply to the start message.

Container Times Out

Creative Times Out

Messaging Protocol

In SHARC, the media container and the creative overlay communicate by exchanging

asynchronous signals that maintain a custom messaging protocol.

This protocol governs:

● Data Layer

● Transport Layer

● Session Layer

Data Layer

https://interactiveadvertisingbureau.github.io/SIMID/#protocol-data-layer

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 39 of 46

SHARC messages transport data. In HTML environments, the data is the message argument of

the Window.postMessage() function.

Data Structure

The message data implements the following data structure for an HTML environment:

dictionary Message{

 required DOMString sessionId;

 required unsigned long messageId;

 required unsigned long timestamp;

 required DOMString type;

 any args;

};

sessionId,

A string that uniquely identifies the session to which Message belongs. See Session Layer.

messageId,

A message sequence number in the sender’s system. Each participant establishes its own

independent sequence counter for the session. The first message messageId value is 0.

The sender increments each subsequent messageId value by 1. In practice, this means

that the creative and the container messageId values will be different based on the number

of sent messages.

timestamp,

A number of milliseconds since January 1, 1970, 00:00:00 UTC (Epoch time). The

message sender must set the timestamp value as close as possible to the moment the

underlying process occurs. However, the receiver should not assume that the timestamp

value reflects the exact instant the message-triggering event occurred, not necessarily the

time of the event.

type,

A string that describes the message-underlying event and informs the receiver how to

interpret the args parameter.

https://interactiveadvertisingbureau.github.io/SIMID/#message-data-structure
https://interactiveadvertisingbureau.github.io/SIMID/#message-data-structure
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-any
https://heycam.github.io/webidl/#idl-any

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 40 of 46

args,

Additional information associated with the message type.

Example of message data:

{

 sessionId: "173378a4-b2e1-11e9-a2a3-2a2ae2dbcce4",

 messageId: 10,

 timestamp: 1564501643047,

 type: "SHARC:Container:adClosed",

 args: {

 code: 0

 }

}

Messages Categories

The protocol defines two message classes:

● Primary messages - the signals triggered by the sender’s internal logic.

● Response messages - the signals the receiver transmits as acknowledgments of the

primary message receipt and processing. There are two response Message types:

resolve Messages and reject Messages.

Both primary and response messages implement the same data structure (see Data Structure).

resolve Messages

The receiver confirms successful message processing by replying with a resolution message.

Message.type must be resolve.

Message.args must be a ResolveMessageArgs object:

dictionary ResolveMessageArgs{

required unsigned long messageId;

any value;

};

https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories-resolve
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories-resolve
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-any

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 41 of 46

messageId,

The value of the messageId attribute of the message to which the receiver responds.

value,

Additional data associated with this resolve message.

Example of resolve message:

{

 sessionId: "173378a4-b2e1-11e9-a2a3-2a2ae2dbcce4",

 messageId: 10,

 timestamp: 1564501643047,

 type: "resolve",

 args: {

 messageId: 5,

 value: {

 id: 45

 }

 }

}

reject Messages

When the receiver is unable to process the message (or refuses it), it responds with rejection.

Message.type must be reject.

Message.args.value must be a RejectMessageArgsValue object:

dictionary RejectMessageArgsValue{

 required unsigned long errorCode;

 DOMString message;

};

errorCode,

The error code associated with the reason the receiver rejects the message.

https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories-reject
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-message-categories-reject

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 42 of 46

message,

Additional information.

Example of reject message:

{

 sessionId: "173378a4-b2e1-11e9-a2a3-2a2ae2dbcce4",

 messageId: 10,

 timestamp: 1564501643047,

 type: "resolve",

 args: {

 messageId: 5,

 value: {

 errorCode: 902,

 message: "The feature is not available."

 }

 }

}

Transport Layer

Transport is a communication mechanism that can send serialized messages between two

parties.

postMessage Transport

In HTML environments, where the container loads creative overlay in a cross-origin iframe, the

parties utilize the standard Window.postMessage() API as the message transport mechanism.

Message Serialization

The message sender serializes data into a JSON string. The deserialized JSON must result in a

clone of the original Message data object.

In JavaScript, JSON.stringify() performs serialization; JSON.parse() - deserialization.

Session Layer

The media container may manage several ads that are in different phases of their lifespans;

multiple concurrent sessions may be active. For example, while the container is rendering ad-A,

https://interactiveadvertisingbureau.github.io/SIMID/#protocol-transport-layer
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-transport-layer
https://interactiveadvertisingbureau.github.io/SIMID/#postmessage-transport
https://interactiveadvertisingbureau.github.io/SIMID/#postmessage-transport
https://interactiveadvertisingbureau.github.io/SIMID/#message-serialization
https://interactiveadvertisingbureau.github.io/SIMID/#message-serialization
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-session-layer
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-session-layer

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 43 of 46

it preloads and engages ad-B. Simultaneous two-way communication between the container

and both ads persists.

Each session has a unique identifier. All messages that belong to a specific session must

reference the same session id.

Establishing a New Session

The `createSession` message is the signal from the creative to the SHARC container that the

underlying rich media is ready to proceed in the ad lifecycle and ready to send and receive

further messages.

SHARC delegates the session initialization to the creative overlay. The creative generates a

unique session id and posts the first session message with the Message.type createSession.

By posting the createSessionmessage, the creative acknowledges its readiness to receive

messages from the container.

Note: There is no expectation for the interactive component to be entirely able to participate in

ad rendering at the time the creative signals createSession message. Full creative initialization

may occur at later stages when the container provides complete data - see § 4.3.7

SHARC:container:init.

Example of createSession Message data:

{

 sessionId: "173378a4-b2e1-11e9-a2a3-2a2ae2dbcce4",

 messageId: 0,

 timestamp: 1564501643047,

 type: "createSession",

 args: { }

}

Creative should initialize the session as soon as possible. The container should establish a

reasonable timeout for the session initialization message receipt.

The container responds to createSession with a resolve message.

Typical Session Initialization Sequence

https://interactiveadvertisingbureau.github.io/SIMID/#protocol-establish-session
https://interactiveadvertisingbureau.github.io/SIMID/#protocol-establish-session
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 44 of 46

1. The container starts a createSession message timeout.

2. The container loads creative.

3. Creative posts createSession message.

4. The container cancels the timeout.

5. The container responds with a resolve message.

6. The container initializes creative. See § 4.3.7 SHARC:container:init.

Session Establishing Delays and Failures

https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#simid-player-init
https://interactiveadvertisingbureau.github.io/SIMID/#session-establishing-delays-and-failures

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 45 of 46

Typically, the container should wait for the creative to post a createSession message before

proceeding to the simultaneous rendering of both ad media and the interactive component.

However, SHARC recognizes scenarios when:

● The creative fails to establish a session within the allotted time.

● The container’s environment restricts timeout usage (effectively, the timeout is zero).

Specifically, SSAI and live broadcasts force zero-timeout use cases.

The creative’s failure to establish a session does not prevent the container from rendering the

ad media. If the creative does not post a createSession message on time, the container may

proceed with the ad media rendering. However, the container allows the creative to recover in

the middle of the ad media playback. The container:

● Does not unload the creative.

● Does not post messages to the creative.

● Maintains the creativeSession message handler.

If the creative has not established a session before the media playback is complete, the

container will report a VAST Error tracker with the proper error code. Examples of situations

when this may occur are listed below.

Sequence for a failed session initialization

1. The timeout expires.

2. The createSession message does not arrive.

3. The container starts ad media.

4. The container reports the impression.

5. The ad media playback completes.

6. The container reports the VAST error tracker.

7. The container unloads the creative iframe.

Creative posts a createSession message after the timeout occurs

1. The timeout expires.

2. The container retains the interactive component.

3. The container initiates ad media playback.

4. The container reports the impression.

5. The container does not post messages to the creative.

6. The creative posts createSession message.

7. The container proceeds with the creative initialization.

Secure HTML Ad Rich-media Container (SHARC)

© 2022 IAB Technology Laboratory iabtechlab.com/sharc Page 46 of 46

Compatibility Modes

SHARC does NOT support MRAID or SafeFrame, but for adoption SHARC is working on bridge

layers to work with MRAID or SafeFrame.

Compatibility Mode with MRAID

The SHARC working group is working on a compatibility bridge to enable transitioning from

MRAID to SHARC.

Compatibility Mode with SafeFrame

The SHARC working group is working on a compatibility bridge to enable transitioning from

MRAID to SHARC.

	Overview
	Change Log
	Audience
	About IAB Tech Lab
	Special Thanks to:

	Introduction
	Guiding principles
	Scope
	Out of Scope

	Goals

	How it works
	The relationship between SIMID and SHARC

	Secure By Default
	API Reference
	Reference Table: Container
	Reference Table: Creative

	Messages from the Container
	SHARC:Container:init
	resolve
	reject

	SHARC:Container:startCreative
	resolve
	reject

	SHARC:Container:stateChange
	Table of possible container states

	SHARC:Container:placementChange
	See SHARC:Creative:requestPlacementChange
	SHARC:Container:log
	SHARC:Container:fatalError
	resolve

	SHARC:Container:close
	resolve

	Messages from the Creative to the Container
	SHARC:Creative:fatalError
	SHARC:Creative:getContainerState
	resolve

	SHARC:Creative:getPlacementOptions
	resolve

	SHARC:Creative:log
	SHARC:Creative:reportInteraction
	resolve

	SHARC:Creative:requestNavigation
	SHARC:Creative:requestPlacementChange
	resolve

	SHARC:Creative:requestClose
	resolve
	reject

	Extensions
	Common Workflows
	Loading (Ad Lifecycle)
	Typical Initialization Workflow
	Non-SHARC Creatives
	How to Handle Close Sequence
	How to Handle Navigation Event
	How to Handle Interactions
	How to Handle Ad End and Unload
	Creative Delays Resolving Init
	Creative Rejects Init

	Error Handling and Timeouts
	Error Codes
	Container Times Out
	Creative Times Out

	Messaging Protocol
	Data Layer
	Data Structure
	Messages Categories
	resolve Messages

	reject Messages

	Transport Layer
	postMessage Transport
	Message Serialization

	Session Layer
	Establishing a New Session
	Session Establishing Delays and Failures

	Compatibility Modes
	Compatibility Mode with MRAID
	Compatibility Mode with SafeFrame

